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EXPERT ANSWERS 

 

Under this regular column titled ‘Expert Answers’, we pose questions of both general and technical 

interest to well-known geophysicists who are considered authorities in a certain area within the 

geophysical domain and get their ‘expert’ answers. As these answers could have an individualistic 

tone, we request the answers from more than one expert in any area. To begin with, we have selected 

the following general question and include the answers given by Hongliu Zeng (Bureau of Economic 

Geology, The University of Texas at Austin), and Rui Zhang (School of Geosciences, University of 

Louisiana at Lafayette, USA). We thank them for encouraging us with their responses. Readers are 

encouraged to send us their feedback and even the questions they would like to get answered by 

experts. 

The order in which the answers appear below is the order in which we received them. 

- Satinder Chopra 

Q. How have we addressed the problem of improving resolution of the seismic 

data over the last three decades, since 3D seismic data started getting adopted 

as a routine by oil companies? 

Expert answer 1 by Hongliu Zeng* 

Introduction 

Resolution is a wide topic. As Reilly et al. (2023) correctly pointed out, we have to address multiple aspects of 

resolution to understand what it is and how to improve it, including various aspects of 3D survey design and 

acquisition, processing, and interpretation. During the last three decades, academia and industry have 

achieved tremendously in the first two areas. Designed for hydrocarbon exploration and development 

purposes, the modern seismic data are typically characterized by fairly high frequency range (from 10 to 70-

100 Hz), zero- or constant-phase wavelet, correct subsurface positioning, and adequate signal-to-noise ratio 

(S/N). Assuming good data quality, this answer aims to address the third area: interpretation. I do not expect 

this answer to be thorough but do hope to inspire more discussions among colleagues. 

Definition   

To begin with, how do we define seismic resolution? There are at least three definitions based on different 

criteria (Figure 1). Based on a zero-phase wavelet and a wedge incased in a host of dissimilar impedance (e.g., 

a sand bed in shale), Widess (1973) claims the constant “peak-to-trough” traveltime at λ/8 (λ = dominant 

wavelength) is the limit of resolvability. Using a zero-phase wavelet and a stepwise, wedged impedance model 

(Figure 1b), Ricker (1953) argues the “flat spot” of composite waveform at < λ/4 should be defined as 

resolvable limit. Kallweit and Wood (1982) persuade most interpreters that the “peak-to-trough” separation 

of composite waveform at λ/4 is the most practical definition of resolvable limit. For a wedge with box 
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impedance profile (Figure 1a), this is also the “tuning point” where the maximum composite amplitude is 

observed. Clearly, the concept of resolution is related to human cognition to the geologic target. New 

concepts are possible in the future to fit new applications. We just have to keep an open mind. Also, the 

above-mentioned definitions are from idealized earth models, representing best possible, theoretical 

resolution. Practical (geological) resolution is not always as good as the theoretical one, owing, in part, to 

imperfect interpretation. Our task is to identify and solve problems for better practical resolution. 

 

Figure 1. Three definitions of seismic resolution seen on wedge models. (a) Ricker wavelet model of a low-impedance wedge 

encased in high-impedance rock. (b) Ricker wavelet model of a wedge with stepwise-impedance profile. 

Progress   

For a given seismic data set (implying the data delivered to interpreters after processing), the main factors 

that control resolution include selection of attributes, the way to use frequency (bandwidth), and the wavelet 

shape in a certain geologic and geophysical formation (stratigraphy, structure, rock physics, and fluid content). 

People have done a lot in the last three decades to address those issues.  

Choice of attributes: While seismic waveform (trace) is still the main platform for interpretation, we have been 

constantly searching for new seismic attributes for better resolution. (1) Many efforts have been made to 

identify distinguishing features for thin beds at or below seismic resolution. In addition to instantaneous 

attributes (Taner et al., 1979), frequency spikes (Zeng, 2010) and phase residues (Matos et al., 2011), as well 

as singularity (Liner et al., 2004; Li and Liner, 2005, 2008), Chopra and Marfurt’s (2007) book summarized many 

useful attributes. (2) Another field is the generation of new attributes by extrapolating or reshaping bandwidth 

with poststack data, such as spectral inversion (e.g., Portniaguine and Castagna, 2004), spectral balancing (e.g., 

Fehmers and Höcker, 2003), pseudo deconvolution (Matos and Marfurt, 2011), and bandwidth extension 

(Smith et al., 2008).  
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Strategies to use frequency information: During the last three decades, analysis and application of seismic 

frequency information have had great advances. (1) Partyka et al. (1999) pioneered the spectral decomposition 

method by applying the short window discrete Fourier transform (SWDFT) to compute the spectral energy for 

time-frequency data volumes. (2) On another hand, the continuous wavelet transform (CWT) (Grossmann and 

Morlet, 1984) crosscorrelates a library of wavelets against a time series to construct localized frequency 

representations of a seismic trace in time, which is further improved by matching pursuit decomposition 

(MPD) for better vertical resolution (Mallat and Zhong 1992; Mallat and Zhang, 1993; Castagna and Sun, 2006).  

Removing interference of low-frequency components, the high-frequency subvolumes from these analyses 

can effectively increase seismic resolution for thin channels, etc. on stratal slices (examples in Chopra and 

Marfurt, 2006). (3) A more effective way is RGB 

colour blending of high-, moderate-, and low-

frequency spectral components (Wessels et al., 

1996) or seismic traces (frequency fusion or 

combination, Zeng, 2015). Especially, frequency 

fusion is more desired for stratigraphic and 

sedimentological reconstruction of a formation 

in vertical view by creating a geologically realistic 

display (mimic outcrop photos) that integrate 

thick and thin beds without significant 

interferences (Figure 2). 

 

 

 

Figure 2. High-resolution stratigraphic and 

sedimentologic analysis achieved by RGB blending of 

three frequencies from a 90° seismic volume. A stratal 

slice (a) is made by blending 14-, 30-, and 50-Hz 

frequency panels with a wavelet transform algorithm. 

(b) Depositional facies, sand thickness (varying from 15 

to 50 m in gamma ray log at well), and depositional 

cycles were controlled by systems tracts and sequence 

stratigraphy. (c) A blending of 14-, 30-, and 50-Hz iso-

frequencies created with MPD is less ideal for 

stratigraphic imaging. 

Wavelet shape and compactness: It is a “rule” for seismic interpreters that they should always use zero-phase 

wavelet because the symmetric waveform is the most compact and of the highest temporal resolution (Brown, 

1991). However, this is true only if a single reflection surface is involved. In the case of a thin bed (typically 

with opposite but equal impedance contrasts at the top and base, Figure 1a), the composite waveform 

becomes antisymmetric, and the advantage of the symmetric wavelet no longer exists. Instead, a 90° wavelet 

can restore the symmetric waveform for a similar compactness and the best resolution. On comparing a stratal 



Expert answers: Addressing the problem of resolution improvement of seismic data 

 

GEOHORIZONS, November 2023 
© SPG India. All rights reserved. 

32 
 

slice series made from 90° data to the slices from zero-phase volume in the same 3D survey, an interpreter 

will see fewer channel images on the 90° slice series because there is less vertical mixing of the stacked events. 

This technique is especially useful in an interfingered thin-bed formation. 

From vertical to horizontal and spatial resolution: When processed (migrated) properly, a 3D seismic volume 

should have the horizontal resolution approximately equal to the vertical resolution (Lindsey, 1989). The value 

of both types of resolution in interpretation, however, depends on geology. The ratio of the horizontal versus 

the vertical dimension of a bed determines its spatial resolution status (Zeng, 2015). Most of the thin 

hydrocarbon reservoirs (especially sandstones) are characterized by a large horizontal dimension (tens to 

thousands of meters) and a small vertical dimension (meters to tens of meters), which are one-way resolved 

in the horizontal dimension, but are only detected in the vertical dimension. Such thin beds are volumetrically 

significant in both marine and lacustrine basins. Fortunately, such beds can be effectively imaged and 

evaluated by the use of seismic horizontal or stratal slices. These observations suggest that seismic 

interpretation of thin beds is restricted only to the detectable limit. Sheriff (2002) sets the detectable limit at 

λ/25. With recent improvements in data processing and interpretation, this number is outdated. Zeng (2011) 

observed in a case study that, with wire-line log verification, distributary channel sands as thin as one meter 

(λ/80) can be spatially resolved on the stratal slice (Figure 3). 

 

 

 

 

 

 

 

Figure 3. Optimal spatial resolution as 

revealed by a stratal slice made in a 50-

Hz dominated frequency 3D volume in a 

lacustrine deltaic system. The thickness 

(m) of sandstone measured in gamma 

ray logs in wells shows a linear 

relationship with amplitude.  

Future   

Finally, a few points on the future direction of seismic resolution research: (1) We need to publish more model 

and case studies to validate useful thin-bed indicative attributes. (2) We should realize that pursuing high 

resolution is not a pure geophysical process; it needs more geologic support and integration. (3) Machine 
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learning (ML) is a big thing these days. With a good-quality training data set, ML can “transfer” or “learn” 

high-resolution well information to between-well area by complex nonlinear combination of seismic 

attributes. This observation has been easily made with model testing (Figure 4). More studies are mandated 

to reveal detailed mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A test of ML-based inversion workflow 

(modified from Zeng et al., 2021). (a) A realistic 

acoustic impedance (Ip) model of an interfingered 

sandstone and shale formation. (b) 60-Hz, 90° Ricker 

synthetic model. (c) Testing results using a five-well-

based large synthetic training data set. The logs in the 

three wells are for blind-testing purpose only. 
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Stalactite in a limestone cave in Baratang Island (Andaman), India. A stalactite is an icicle-shaped formation 

with a pointed tip, that hangs from the ceiling of a cave and is produced by precipitation of minerals from 

water dripping through the cave ceiling. (Photo courtesy: Ritesh M. Joshi)  
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EXPERT ANSWERS 

 
Expert answer 2 by Rui Zhang* 

Seismic resolution remains an enduring subject that has continually embraced innovative insights over the 

decades, as it wields a direct influence on subsurface interpretation, particularly in the context of thin reservoir 

beds. In this article, we will discuss the techniques that can improve the resolution of the poststack seismic 

data. The discourse on seismic resolution traditionally commences with the seminal work of Widess (1973) In 

this pivotal article, the delineation of seismic resolution confines itself to a quarter wavelength (λ/4) in terms 

of two-way travel time, where a stratum measuring less than a threshold of λ/8 assumes the classification of 

a thin-bed, colloquially referred to as a "tuning thickness." This implies that layers falling beneath this 

threshold emerge as challenging to distinguish. The paper further underscores the feasibility of detecting or 

characterizing these thin-beds through various techniques. One illustrative method involves employing the 

tuning curve, which allows for the determination of thin-bed thickness by virtue of its integrated amplitude 

response. Presented in Figure 1 are two instances spotlighting predominantly even and odd wedge models, 

each accompanied by their respective tuning curves. In scenarios where the top and base reflection 

coefficients bear identical polarity, a constructive composite amplitude surfaces when thickness is less than 

the turning point, exemplified in Figure 1a; conversely, Figure 1b reflects the converse situation. It is important 

to note, however, that this technique can be influenced by the sidelobe of the estimated wavelet, potentially 

giving rise to inaccuracies in thickness estimation. 

Deconvolution was one of the first developed seismic data processing techniques based on the convolution 

model. The convolution model assumes that seismic trace (s) is the convolution result of reflectivity (r) and 

wavelet (w) with addition of noise (n), as shown in Equation (1). “∗” represents the convolution operation. 

s(t) = r(t) ∗ w(t) + n(t)                                             (1) 
 

The corresponding frequency domain expression is shown below. 
 

𝑆(ω) = r(ω) × w(ω) + n(ω)                                     (2) 
 

The convolution model is based on seven assumptions (Yilmaz, 2001), namely, (1) The earth is made up of 

horizontal layers of constant velocity, (2) the source generates a compressional plane wave that impinges on 

layer boundaries at normal incidence. Under such circumstances, no shear waves are generated, (3) the source 

waveform is known, (4) the source waveform does not change as it travels in the subsurface - it is stationary, 

(5) the noise component n(t) is zero, (6) reflectivity is a random process. This implies that the seismogram has 

the characteristics of the seismic wavelet in that their autocorrelations and amplitude spectra are similar, and 

(7) the seismic wavelet is minimum phase. Therefore, it has a minimum-phase inverse. 

 

Deconvolution aims to recover the reflectivity (r) with improved resolution by convolving an operator (f), also 

called an inverse filter or inverse wavelet, with seismic trace (s). Theoretically, the convolution result of the 

operator (f) and wavelet (w) would be a delta (δ) function.  
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f(t) ∗ w(t) = δ(t);   f(t) =  w−1(t)                         (3) 

 

Figure 1: Predominantly even and odd wedge models. (a) Predominantly even wedge model and its tuning curve with 

seismic responses overlaid. (b) Predominantly odd wedge model and its tuning curve with seismic responses overlaid. 

Seismic responses are generated with a 40-Hz Ricker wavelet convolved with the wedge reflectivity. The tuning thickness is 

10ms. (Zhang and Castagna, 2011)  

If all seven assumptions hold true, the process of deconvolution becomes a straightforward endeavor, 

resulting in the recovery of accurate reflectivity through the utilization of the estimated wavelet obtained 

from seismic data and its subsequent inversion. However, the practical reality is that these seven assumptions 

often fall short of being completely valid. Consequently, the effectiveness of deconvolution hinges on the 

strategies employed to address these discrepancies and arrive at a precise estimation of the wavelet, as well 

as a stable inverse filter. 
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The construction of the inverse filter typically involves minimizing the Lp norm of the discrepancy between 

forward modeling and the actual data with constraint. In instances where p equals 2, the derivation of the 

inverse filter adheres to the principles of the classic least-squares approach, as elucidated by (Berkhout, 1877). 

However, when p assumes a value below 2, the inverse filter yields a reflectivity characterized by sparse-spike 

patterns, as demonstrated by the works of Taylor et al. (1979), and Levy and Fullagar (1981).  

 

Assumptions 1 and 2 primarily pertain to acquisition and migration techniques, aspects which are not delved 

into within this discussion. Assumption 3, recognized as the stationarity assumption, has been a focal point 

of study due to seismic waveforms undergoing shifts in amplitude, frequency, and phase as they traverse the 

subsurface. A pertinent example is the incorporation of the attenuation factor Q, which characterizes energy 

decay during seismic wave propagation, into the formulation of the time-varying deconvolution operator (f). 

This integration serves to counteract energy loss, enhancing reflectivity accuracy, as demonstrated by 

(Margrave, 1998). This contribution prompted the consideration of spectrum variations in seismic data arising 

from dispersion effects. 

 

 

Figure 2: A example seismic trace in the left panel; its spectral decomposition result in the middle panel; wavelets kernel 

matrix in the right panel (Zhang and Fomel, 2017). 

Zhang and Fomel (2017) introduced a systematic approach to extract time-varying wavelets, harnessing the 

outcomes of S-transform-generated time-frequency decomposition, illustrated in Figure 2. The left panel 

replicates a seismic trace, while the middle panel showcases the corresponding time-frequency 

decomposition outcomes achieved through the S-transform technique. Notably, the right panel depicts the 

extraction of time-varying wavelets from these decomposition results, arranged along the diagonal of a 

square matrix. This innovation showcases a refined perspective on addressing the non-stationarity inherent 

in seismic data. 

 

Seismic data inherently incorporates noise, rendering assumption 4 less tenable. In practice, this noise is 

typically treated as stochastic with a white spectrum, consequently aligning with the least-squares approach. 

An essential factor in achieving optimal deconvolution outcomes involves possessing a priori understanding 

of the noise level. The accurate calibration of this noise level proves critical, as misjudgment can introduce 
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bias into the estimated wavelet, thereby amplifying noise within the deconvolution result. Coherent noise 

compounds this challenge, particularly in situations where the estimation of the wavelet encompasses 

spectral elements of such noise. In these scenarios, a judicious approach involves excluding specific noises, 

such as multiple reflections, which could be suppressed via deconvolution when the operator is thoughtfully 

defined utilizing primary reflection data. 

 

Assumptions 5 and 6 share a close relationship when it comes to wavelet estimation. The stochastic 

presumption regarding reflectivity engenders parallelism between the autocorrelation spectra of the wavelet 

and seismic data, constituting a classic method for wavelet estimation. The reflectivity's broader spectrum 

compared to seismic data permits its consideration as stochastic within the seismic spectral range. 

Nonetheless, instances where the reflectivity defies stochasticity necessitate its integration into wavelet 

estimation. For instance, well-log data can be coupled with seismic data to derive a calibrated wavelet 

conducive to deconvolution or inversion procedures. This approach is particularly advantageous in situations 

where the stochasticity assumption does not align with the characteristics of the subsurface. 

Assumption 7 of minimum phase is important for obtaining stable deconvolution result, because a maximum 

phase wavelet could result in unstable result. This assumption can be accomplished during the wavelet 

estimation with phase rotation.  

 

In addition to deconvolution methods, another pivotal approach for improving resolution in seismic imaging 

is inversion techniques. These techniques are often formulated as iterative solutions of linear equations. While 

iterative inversion procedures tend to exhibit greater stability compared to operator-based deconvolution, 

they do demand more computational time. 

 

The equation describing the relationship between the seismic trace (denoted as 'y'), the kernel matrix ('A'), 

and the solution ('x') is given by: 

 

y = Ax                                                              (4) 

 

In instances where the matrix 'A' is constructed as a diagonal wavelet matrix, like the depiction in the right 

panel of Figure 2, the solution corresponds to reflectivity. The least-squares solution is attained by minimizing 

the L2-norm or root-mean-square error between the forward-modeled data and the actual data, as depicted 

in the equation below: 

 

min‖y −  Ax‖2                                                     (5) 

 

Another advantage of the least-squares solution is its adaptability in incorporating various forms of pre-

existing information, enabling the derivation of distinct subsurface properties with enhanced resolution. For 

instance, an acoustic impedance model at low frequencies can be integrated into the 'A' matrix, yielding a 

subsurface acoustic impedance solution (Oldenburg et al., 1983). Puryear and Castagna (2008) introduced a 

spectral inversion method that employs frequency-domain responses of dipole reflections as basis functions, 

facilitating the resolution of thin-bed layers. Zhang and Castagna (2011) developed a sparse layer inversion 

technique, which integrates dipole decomposition using a basis pursuit inversion scheme to achieve inverted 



Expert answers: Addressing the problem of resolution improvement of seismic data 

 

GEOHORIZONS, November 2023 
© SPG India. All rights reserved. 

40 
 

reflectivity with improved resolution. The basis pursuit algorithm, a method that minimizes the L1 norm, 

demonstrates exceptional performance and stability in this context. 

 

min [‖y −  Ax‖2  + 𝜆 ‖𝑥‖1]                                                  (6) 

 

Figure 3: (a) shows a 3D seismic volume. (b) shows inverted reflectivity by using the basis pursuit method with incorporation 

of the dipole decomposition. (c) shows the relative impedance derived from the inverted reflectivity Zhang and Castagna 

(2011). 

The inverted reflectivity consistently exhibits superior high resolution, as depicted in Figure 3b. Additionally, 

Figure 3c illustrates a relative impedance volume derived from the reflectivity, often referred to as band-

limited impedance in existing literature. Notably, the relative impedance volume also demonstrates higher 

resolution than the seismic data itself, revealing a layered structure that greatly appeals to geologists, in 

contrast to the reflectivity which primarily represents the layer boundaries. 

 

Both deconvolution and inversion methods have traditionally been applied to time domain seismic data. 

However, in contemporary seismic imaging, there is a growing adoption of depth domain migration 

techniques to acquire seismic data in depth coordinates. This shift raises the question of whether the 

techniques can be directly applied to depth domain data. In response, the answer is a definitive "Yes," albeit 

with some necessary modifications. 

 

One pivotal aspect involves transitioning from time-frequency domains to depth-wavenumber domains. This 

alteration is crucial, as it facilitates the direct implementation of many spectral expansion techniques on depth 

domain seismic data Zhang and Deng (2018). By embracing this paradigm shift, seismic imaging techniques 

can be refined to better capture subsurface structures and properties in the depth dimension. 
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In recent years, the integration of machine learning techniques has emerged as a transformative approach to 

significantly enhance seismic resolution. Leveraging the computational prowess of machine learning 

algorithms, seismic data can be processed and interpreted with unprecedented precision. These techniques 

enable the extraction of subtle subsurface features that might be challenging to discern using traditional 

methods alone. Machine learning models, such as deep neural networks and convolutional neural networks, 

excel at learning intricate patterns within seismic data and effectively denoising or deblurring images. 

Moreover, they can aid in overcoming limitations associated with acquisition noise, incomplete data, and 

complex subsurface structures. By training on extensive datasets, machine learning algorithms can infer 

complex relationships between seismic attributes and subsurface characteristics, leading to high-resolution 

reconstructions that provide geoscientists and engineers with a more detailed understanding of the Earth's 

subsurface. Chai, et al., (2021) introduced a workflow to derive reflectivity from data by training end-to-end 

encoder-decoder-style 2D/3D convolutional neural networks (CNN). Figure 4 shows comparison between 

Sparse-spike inversion results (Figure 4b) and CNN results (Figures 4c and d). 

 

As the field of machine learning continues to advance, its potential to revolutionize seismic imaging and 

interpretation remains a promising frontier in the pursuit of enhanced resolution and accuracy.  

 

Figure 4 (a) shows a cross-section of 3D Erskine data. 

(b) shows inversion result by conventional trace-by-

trace sparse-spike inversion method. (c) shows results 

of the 2D CNN prediction. (d) shows results of the 3D 

CNN prediction. (Chai et al., 2021) 

G 
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