Seismic Attributes and Property Estimation of Thin Sub-Resolution Sand-Shale Reservoirs

Piyapa Dejtrakulwong¹, Tapan Mukerji², Gary Mavko¹
¹Stanford Rock Physics Laboratory, Stanford University
²Stanford Center for Reservoir Forecasting, Stanford University

Abstract

Property estimation of thin sand-shale reservoirs using seismic response could be challenging due to limited seismic resolvability. A forward-modeled investigation on seismic signatures of multiple realizations of pseudo 1-D thin sand-shale sequences, constructed from a discrete, first order Markov chain model, reveals possible distinctions of thin sand-shale reservoirs with different net-to-gross and saturations in the wavelet-transform-based attribute space. We also show a numerical example of how to apply this technique in a real situation. First, we assume that the transition matrix or thickness distributions at the well location are known. In reality, this information can be estimated from the well data. Then, we create synthetic 2-D spatial models describing geology away from the well, explore statistically how attributes would vary with a change of sand/shale ratios and apply the statistics to obtain the posterior distributions of net-to-gross at three selected locations from the seismic section.

Introduction

Seismic estimation of reservoir properties is common in petroleum exploration. However, detecting and estimating petrophysical properties of thinly layered reservoirs with layers below seismic resolvability can be challenging. Most studies of thin beds and their seismic response have focused on the resolution problem (e.g. Chung and Lawton, 1995; Okay, 1995). Lange and Almoghrabi (1988) introduced lithology and pore fluids in their forward modeling of thin layers and suggested that spectral parameters could help discriminate layer properties. However, the study was limited to a layer bounded by two different materials with fixed properties. Most stratigraphic sequences in nature reflect non-random stacking sedimentary patterns. Depending on depositional environments, the main characteristics of such patterns include lateral extents, vertical arrangements of lithologies, layer thickness distributions, etc (Harms and Tackenberg, 1972). Two stacks of sand-shale layers with similar average properties can yield different seismic response if layer arrangements are different (e.g. lamination, fining upwards) (e.g. Khatri and Gir, 1976; Takahashi, 2000; Hart, 2008). Markov chains have been used as a tool to simulate bedded sequence to capture these preferred directionality and asymmetric facies associations signaling depositional process (e.g. Krumbien, 1969; Harbaugh and Bonham-Carter, 1970; Schwarzacher, 1975; Xu and MacCarthy, 1996; Parks et al., 2000). Velzeboer (1981) modeled sequences by a first-order Markov chain with distributions of physical properties and theoretically showed possible estimation of sand-shale ratios from power spectrum of reflected response. Sinvhal and Sinvhal (1992) constructed transition matrices from well logs using first order Markov chains to simulate pseudologs. Realizations of synthetic seismograms were created and used in statistical studies for lithology discrimination. The main focus of this paper is to study seismic signatures of multiple realizations of thin sand-shale sequences. A sedimentary column is generated in two steps: simulating the arrangements of lithology by running a Markov chain and assigning physical properties corresponding to each layer from rock-physics relations. Layer properties assigned to the sequences come from established rock-physics binary-mixture models. Forward computation of the seismic response of the sequences is then used to extract statistical attributes and relate them to the spatial patterns and properties of thin sand-shale reservoirs.

Markov Chain Models in Stratigraphic Sequences

In stratigraphic analysis, a column of sediments can be described as a spatial arrangement of a finite number of discrete states (i.e. lithology). Markov chains provide a mathematical tool utilizing concepts of conditional probabilities to describe the dependency of the current state (i.e. lithology) on the previous states. If the transition from one state to the next depends only on the immediately preceding state, the chain is said to be first-order (Harbaugh and Bonham-Carter, 1970; Sinvhal and Khattri, 1983). Transition probability values for every state pair are tabulated into a transition matrix, which is a common method of representing a Markov-chain model (Parks et al, 2000). An element p_{ij} (at the i^{th} row and j^{th} column) represents the probability of a transition from state i to state j, or the probability of going to state j, given that i is the current state. In a stratigraphic study, the transition matrix is usually obtained from real geological observations and can be constructed in two common ways: counting states using a fixed sampling interval, or counting states only when a transition occurs (an embedded form). For the former approach, the lithologic state is determined and considered only at discrete points equally spaced along a stratigraphic column. This allows successive points to have similar lithology, meaning the diagonal element (i.e. probability that a state has a transition to itself) can be nonzero (Krumbien and
In practice, selecting a proper sampling interval for this method can be problematic. Choosing an interval too small relative to the overall average bed thickness can increase the counts of transitions of a state to itself. Consequently, the diagonal elements become very large, and probabilities of the state transiting into the others become unreasonably small. In contrast, using too large a sampling interval can miss very fine-layered characteristics of the sequences (Sinvhal and Sinvhal, 1992). Krumbein and Dacey (1969) observed that the lithologic state of a sequence simulated by these kind of chains often yields thicknesses that are geometrically distributed. In our simulation, we discretize the lithology into 4 states representing a gradual increase in shaliness. Following the method of fixed sampling by using a step size of 0.5 m, we create 4x4 transition matrices whose states are sand, shaly sand, sandy shale, and shale. Basic geological patterns such as aggrading, fining upwards, and coarsening upwards sequences can be simulated by matrices with appropriate off-diagonal patterns as shown in the examples in Figure 1. In contrast, in an embedded-form transition matrix, all diagonal elements are zero, since transitions are considered only when lithologic states change. In this case, thickness distributions are extracted directly from geological observations (Figure 2).

![Fig1](image1.png)

Fig.1 Examples of transition matrices with fixed sampling intervals. Three different types of geology are shown: fining upwards, coarsening upwards, and aggrading sequences. In this case, lithologic states are sand (s), shaly sand (sh-s) sandy shale (s-sh) and shale (sh). The off diagonal elements marked by arrows control the directionality of the sequences.

Rock physics relations for sand-shale mixtures

A set of rock-physics relations used in our simulations includes the Yin-Marion mixing model (Marion et al., 1992), the soft sand model (Avseth et al., 2005), and Gassmann’s fluid substitution equation (Gassmann, 1951). Marion et al. (1992) introduced a dispersed-mixing model for bimodal mixtures, in which the two end-members are particles of two different sizes. In this case, we consider sand-shale mixtures where sand grains are mixed with clay particles. The model then describes the topology of the mixing and relations between volume fraction of clay and porosity. For clay fraction less than the sand porosity, clay starts filling the sand pore space. Sand grains provide the load-bearing matrix of the mixture. At this stage, porosity decreases because clay particles replace some portions of the original sand pore space. When the clay content is greater than the sand porosity, sand grains are displaced and disconnected. The transition from grain-supported to clay-supported sediments occurs. At this stage, porosity increases linearly with increasing clay fraction because the situation is simply equivalent to substituting voidless sand grains with a porous chunk of clay (Yin, 1992). Thus, the plot of fraction of clay versus porosity shows a V-shape pattern (Figure 3).

![Fig2](image2.png)

Fig.2 Examples of an embedded-form transition matrix with realizations of sequences. In this case, lithologic states are sand (s), shaly sand (sh-s) sandy shale (s-sh) and shale (sh). An example of thickness distributions used is shown in the lower left.

![Fig3](image3.png)

Fig.3 Illustrations of sand-shale mixtures, with their porosity and velocity values related to clay content (Modified after Marion, 1992). Porosity vs. clay content shows a V-shaped trend, where the two end points are the pure sand and pure shale porosity. Four lithologic states are marked including sand (s), shaly-sand (sh-s), sandy-shale (s-sh) and shale (sh).
We assign mean clay fractions of 0.1, 0.3, 0.6 and 0.9 to the sand, shaly-sand, sandy-shale and shale states respectively. The corresponding porosity values are determined from the Yin-Marion model. Mean velocity is obtained from the soft sand model which uses the lower Hashin-Shtrikman bound to construct velocity-porosity trends for sand mixing with varying clay content (Avseth et al., 2005). Density is a weighted average of density of each component in the layer including pore fluids. We introduce uncertainties by assuming each lithology state having a distribution of velocities with a mean equal to the calculated velocities and standard deviations of 0.1–0.2 km/s.

Two main scenarios are explored. First, to investigate effect of net-to-gross, we study a set of aggrading-type transition matrices with same water saturation (Sw=0.1 for sand layers and Sw=1 for the others) but with different limiting distributions (i.e. varying sand fractions). For this scenario, we run simulations for velocity distributions with standard deviations of 0.1 and 0.2 km/s. Second, to study the effect of saturation, we focus on sequences generated from a similar transition matrix but with varying saturation values. We use Gassmann’s equation to substitute mixtures of water and oil with the desired saturations into the sand layers in the sequences. All other lithologies have Sw equal to 1. Full waveform, normally-incident, reflected seismograms (Figure 4) are simulated using the Kennett algorithm (Kennett, 1983) with a 30-Hz Ricker wavelet.

Wavelet–transform based analysis

Wavelet transform decomposes a signal into a set of scaled and translated versions of a selected wavelet function. The transform has been used, e.g., to study fractal behavior of seismic data and well logs to characterize lithofacies (Álvarez et al., 2003; López and Aldana, 2007). Using well logs, López and Aldana (2007) showed a possible relation of lithofacies and parameters including fractal dimension, intercept and slope obtained from linear fits to plots of logvariance of wavelet-transform coefficients versus scale. Using a complex Gaussian wavelet, we wavelet transform the simulated seismograms yielding transform coefficients at various scales. We calculate variance of the modulus of these coefficients for every scale and make a log-log (base2) plot of the variance versus scale (Figure 5). Then, we extract the slope and intercept of a linear fit as statistical attributes for each realization.
Results

Figure 6 shows slope versus intercept from wavelet transforms of seismic responses of sequences from 6 different transition matrices of the form, shown in Table 1. However, their limiting distribution (π) are different (i.e. sand proportion, πsand, varies from 0.32 to 0.48). In all sequences, all sand layers have water saturation (Sw) of 0.1 while other lithology states have Sw of 1. Two plots correspond to results from simulations using two standard deviations (σv= 0.1 and 0.2 km/s) for velocity distributions. In both cases the clouds of points move down toward the lower left when πsand increases as the transition matrices change. However, for a larger σv (e.g. σv = 0.2 km/s), points corresponding to different πsand are less spread out. The probability distributions of slope and intercept move toward the left as πsand increases. Figure 8 illustrates changes in slope and intercept as water saturations in the sand layers vary (Sw=0.1, 0.5, and 1). All three transition matrices have the same ρ: [0.45 0.05 0.05 0.45]. Data points, especially those corresponding to Sw=1, are gradually separated out as we move from the left most to the rightmost plots, due to changes in intercept (Figure 9).

Table 1: Transition matrices used to generate sequences for simulations in Figure 6. Values of x used are from 0.45 to 0.95.

<table>
<thead>
<tr>
<th></th>
<th>Sand</th>
<th>Shaly Sand</th>
<th>Sandy Shale</th>
<th>Shale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>(1 - x)/3</td>
<td>(1 - x)/3</td>
<td>(1 - x)/3</td>
<td>x</td>
</tr>
<tr>
<td>Shaly Sand</td>
<td>(1 - x)/3</td>
<td>(1 - x)/3</td>
<td>(1 - x)/3</td>
<td>x</td>
</tr>
<tr>
<td>Sandy Shale</td>
<td>x</td>
<td>(1 - x)/3</td>
<td>(1 - x)/3</td>
<td>(1 - x)/3</td>
</tr>
<tr>
<td>Shale</td>
<td>x</td>
<td>(1 - x)/3</td>
<td>(1 - x)/3</td>
<td>(1 - x)/3</td>
</tr>
</tbody>
</table>

Discussion

The layer thickness used in our simulations have wavelength to thickness ratio of about 100. Seismic waves cannot distinguish the boundaries of these thin layers because of their band-limited characteristics. Hence, interpretations of these sub-resolution layers can only be based on statistical attributes of the seismograms. In the present study, synthetic seismograms of thin sand-shale sequences are investigated by extracting slope and intercept from a linear fit to the log-log plot of variance of waveletcoefficient modulus versus scale.

We see a decrease in both slopes and intercepts when the percent of sand in the total sequence (sand)
increases for the selected form of transition matrices. For a larger standard deviation (σ_v) used in velocity distributions, we see slopes and intercepts for different sand are less spread out. One reason for this could be that using larger σ_v would result in larger overlaps in velocities drawn for each state. Thus, even when sand increases (i.e. more sand layers in the sequences), there is not much change in the overall velocities drawn for each sequence because all four lithology states would yield close values of velocities. Larger overlaps in the slope-intercept attributes would also result in larger uncertainties in property estimations.

In some cases, slope and intercept of sequences obtained from the same transition matrix increase with increasing water saturation. It can be seen that different transition matrices can lead to different behavior in the slope-intercept space, even when they have the same limiting distribution. The different behavior of the three plots in Figure 8 possibly comes from blockier nature of the sequences generated from the transition matrix in the rightmost plot compared to the left ones. This blocky characteristic is expected since the matrix has two large probabilities in the main diagonal ($ps = p_{shh} = 0.85$). Thus, spatial statistics play a critical role in seismic signatures of sub-resolution systems.

This study does not focus on investigating all possible transition matrix configurations; however, the study can be applied to the problem of thin reservoir characterization. Assuming that the stratigraphy in the explored area demonstrates a lateral continuation within conformable sequences, inferred transition matrix from a calibration well is the posterior probability. In this example, we use a simple geological model (i.e. thinning of sand layers) to create many

Net-to-gross estimation using Bayesian framework

We set up a numerical example by first assuming a known transition matrix estimated at the well location. We use the embedded-form transition matrix with 2 lithologic states representing sand and shale and assume the thickness distribution of both lithologic states to be exponentially distributed with average thickness of 0.3 and 0.5m respectively. These transition matrices and thickness distributions are used to generate 1-D vertical sequences at the well location. Then, we create multiple realizations of 2-D spatial models describing geology away from the well location (i.e. sand layers are thinning linearly starting from the well location into an area away from the well) (Figure 10). We then explore statistically how attributes vary with changes in sand/shale ratios as shown in Figure 11. These statistics will then be applied to a synthetic seismic section for estimating net-to-gross of the area away from the well. We estimate posterior distributions of net-to-gross at three selected locations from the seismic section. Posterior distributions of net-to-gross given attributes can be obtained using Bayes’ formula (Equation 1):

$$P(NG | A) \propto P(A | NG) \times P(NG),$$

where NG is net-to-gross, A represents attributes, which are slope and intercept in this case, $P(NG)$ is the prior probability, $P(A | NG)$ is the likelihood function, and $P(NG | A)$ is the posterior probability. In this example, we use a simple geological model (i.e. thinning of sand layers) to create many changes with varying sand/shale ratios and saturations. These statistics of the attributes can then be applied to observations away from the well to help characterize the area and estimate the uncertainties. We show a numerical example of this application in the next section.

Fig.10 A realization of 2-D geologic section used in the numerical example. The area at the left end marked with the red box corresponds to the well location. Sand and shale are colored in yellow and blue respectively. The thicknesses of sand layers decrease linearly away from the well. The total thickness of reservoir is 150 m. An example of the thickness distribution used to simulate the sequence at the well location is also shown.
realizations of 2-D rock sections. From these realizations, we can then estimate \(P(NG) \) or the prior probability of net-to-gross and use it together with the likelihood function to obtain the posterior distribution of net-to-gross at three locations as shown in Figure 12. The posterior distribution captures the true value as well as the uncertainty of the interpretation.

Fig. 11 Results of 1000 realizations of 2-D sections show how slope and intercept vary with varying sand fractions.

Fig. 12 (Lower left corner) Posterior probability distributions of net-to-gross for three selected locations on the unknown seismic section labeled as (1), (2) and (3). The true values for each location are shown in the table at the lower right corner.
Conclusions

An investigation of synthetic seismograms from thin subresolution sand-shale reservoirs is performed. The thinlayer sequences are generated from a set of transition matrices representing aggrading clastic sequences. Wavelet-transform based attributes (slope and intercept in variance-scale plot) are extracted. For the selected form of transition matrices with the same water saturation, an increase in percent of sand (net-to-gross) results in a decrease in both slope and intercept values. For the same transition matrix, an increase in water saturation may result in an increase in both slope and intercept. The present study also shows that not all transition matrices with a similar limiting distribution give the same trends. We show a numerical example of how the wavelet-transform attributes can be used to estimate properties of thin sand-shale reservoirs away from the well. Using Monte-Carlo simulations and Bayes’ formula, posterior distributions of net-to-gross for the seismic section can be obtained. Prior geological knowledge about the area can help reduce uncertainty. Further investigation of other attributes will also help us better characterize properties and patterns in thin sand-shale reservoirs.

Acknowledgements

This work was supported by the SRB and SCRF. We also would like to thank Paul Switzer for his suggestions.

References

