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Introduction

Reservoir characterization often is a complex thsk may
require detailed integration of all available deéteoughout
the life of a field. At each stage of reservoir raling, there

is a certain degree of uncertainty associated thétguality

of input data and the modeling procedure chosen.
Diagenetic alteration of petrophysical properties a
reservoir is an important aspect that has sigmifica
implication on the ultimate productivity of the eegoir.
This impact is even more significant for carbonate
reservoirs.

The main mechanisms of dolomitization are assatiate
with mixing of fluids, seepage, reflux, burial and
evaporation. The dolomization zones with respect to
different depositional environments have been stuidiy
numerous researchers (Moore, 2001; Loucks, 1998)eS
the carbonates are deposited in a ramp type piatfor
mixing of sea-water and meteoric water can be tlm
mechanisms for dolomitization. The mixing zone igstly

in the vicinity of ramp where sea water and meteater
zones are adjacent. Moreover, within the vicinityirmer
ramp lagoon, seepage, reflux of meteoric water and
evaporation yield dolomitization.

The study and results presented in this paper @reaf
reservoir in the Gulf of Mexico. The reservoir istly
characterized by various facies and different tnaect
networks. One of the important producing zoneshis t
Cretaceous breccia facies mainly composed of dotomi
breccias. Detailed interpretations of rock typesckr
contents and petrophysical properties for core sesnpere
provided. These interpretations reported that threcdia
formations were deposited in a ramp type carbonate
platform and tectonic activities yielded fracturetworks.
The depositional environments for some of the core
samples were identified to be either at the lagbamier or

slope along the platform. Although previous intetptions
yielded valuable information, the origin of the @@ zone
and the vugular porosity were investigated withi@wto
improve the geological model and identify future
exploration locations and targets.

Geologic Analysis of the brecciated zone

For understanding and determining the origin ofcbie
zone, it is essential to identify the diagenetierds and
distribution of characteristic facies. Thus, redtign of
depositional environments such as inner ramp, draamd
slope, is crucial. By examining petrophysical pmtigs and
sedimentological interpretations for correspondiamples,
specifics of the carbonate ramp environment can be
constructed.

Using the well log and core data, the thicknes$ésearcia
zone in each well were determined. It was obsetivatithe
breccia zone thickness initially increases towasdst and
then decreases in well 2031 as shown in Figurehis T
change in the thickness may indicate a lateral ghamthe
depositional environment. The locations closer he t
barrier (top of the ramp) are expected to havekémic
breccias (due to the ramp type platform profilepwards
the down-dip direction (away from the barrier), threccia
zone thickness should decrease.
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Figure 1 —Breccia Zone Thicknesses along a WNW-ESR&sect
through the reservoir.

The core samples of Well 48 were interpreted asgoei
outside the ramp region where as the sedimentalbgic
interpretations of Well 27, which is in the viciyiof Well-
128, indicated that the samples were deposited ramna
environment. This indicates a lateral change iroditijpnal
environment along the platform in east directiohud the
changes in the breccia zone and the previous hetetppns
yield a preliminary result. It can be concludedtthze
barrier of the carbonate platform might be in elsiction,
since the change in thicknesses and previous netatpns
yield similar results.

Determining a diagenesis indicator based on effeut
porosity

Effective porosity can be calculated using an ekten
Archie equation that utilizes the resistivity andnis
porosity logs. In wells where total porosity, asasigred by
the sonic log, along with the effective porosityaigilable,
the difference between the two porosity values (if
significant) can be attributed to diagenesis. Thailable
matrix, vugular, fracture and effective porositytalan
Petrel model were exported in order to examiner thei
contributions to effective porosity and comparéhi® sonic
porosity distribution.

Figure 2 below shows the porosity contributionsmfro
matrix, vugular, fracture and effective porositytalas
calculated by the extended Archie’s equation forll\We
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Figure 2 also shows the comparison between thec soni
porosity and effective porosity values for the samed.

The gaps in Figure 2 are due to the unavailabdftyhe
data. From Figure 2, it can be observed that mptmsity
mostly contributes to effective porosity whereaguar
and fracture porosity have limited contributionsra the
well section. Despite the differences in sonic effdctive
porosity values observed in the logs, similar teerade
observed. By repeating this analysis for other syeilcan
be concluded that effective porosity in the resen®
mostly affected by matrix porosity. The contributiof
vugular and fracture porosity is generally limiteddistinct
intervals. It was recognized that for the wellshagorosity
contributions, there exist intervals in which sedany
porosity features have relatively significant effec
Although these intervals are limited, the arealticuity of
them might indicate continuous paths for paleo-flow
directions. It was also observed that within thervals of
significant secondary porosity featuremnic porosity and
effective porosity data show some reasonable vemmin
trends. These variations might be due to the
interconnectivity of the vugs and fractures somevbich
are identified by sonic log.
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Figure 2 - Porosity Contributions along well 4 atedmined by the extended Archie’s equation (leftgd). The comparison between the sonic
total porosity and effective porosity is shown thght panel.

Geostatistical Analysis of Diagenesis Geostatistical tools are ideal for modeling thatartainty.
Consider the following indicator random variable/jR
The previous analysis provides a good conceptual

understanding about the regions of the reservair rifight 1 if Z[u] e k™ class

be affected by diagenesis. That understanding iis & [(uk)=+ " -
observations along wells. The subsequent taskusé¢ahe 0 otherwise

well information in order to construct spatial misdfer the ) ' )

diagenetic processes. Since there is consideratitgaity In this case, we have two classes — either the abck
in the interpretation of logs and other informatinnorder particular depth may be diagenetically altered afr. iThe
to derive variations in porosity caused by diageneke indicator RV has the following interesting property

models constructed have to be stochastic so aowdp a
realistic depiction of uncertainty associated.



E{I(u;z,)} =Prob{Z(u)<z,}=F(u;z,)

The indicator semi-variogram is a complimentary swea
that assesses the probability of transitioning fr@am
diagenetically altered location to an unalteredmn. The
indicator semi-variogram is defined as:

y,(hz) = E{[](u;zk) —I(u+ h;z,\_)]j}.

As can be seen in the above, the indicator vanogralue
is high when IQ) is different from 1(+h).

The histogram of sonict values for wells in the reservoir
of interest is shown in Figure 3 below. It can bersthat
the cdf exhibits an inflexion att = 47ps. This might be
representative of reservoir rock whose porositybeen
reduced by diagenetic alterations.
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Figure 3: Probability distribution of sonid values in the breccia
zone.
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Initially indicator variograms were computed in f90°
azimuth directions as well as the 25/105° azimuth
directions corresponding to a travel time threstodld7 ps.
It was inferred that the %90° directions exhibit a higher
anisotropy ratio (i.e. the ratio of minor to majange of
the indicator variograms). This direction of anispy is

approximately consistent with the direction of the

carbonate ramp determined by looking at the caterds.
Better identification of suitable thresholds fordicetor
variogram calculations was attempted using theiecplot

between sonic t values and corresponding gamma ray

values. The scatter plot was analyzed using k-nchaster
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analysis (Coleman, 2000). Figure 4 shows the driata of
sonic t values within each cluster when the analysis was
performed specifying 3 clusters. Based on the fistos in
Figure 4, it can be inferred that corresponding ao
threshold of 70us, there is a clear distinction in the
histogram of cluster 2 compared to all the othestelrs.
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Figure 4: Histogram of sonict within each cluster when the
analysis is performed with 3 clusters.




Indicator variogram was calculated in the 9C¢°, 15° and
105 azimuth directions corresponding to a sonit
threshold of 6Qus and shown in Figure 5. The theoretical
sill value (p*(1-p)) at that threshold is 0.25c#n be seen
that the variogram indicates maximum anisotropha90
azimuth direction. This is consistent with the alsagon in
the previous report. However, in contrast to theogaam
presented in the previous report, the computedgeaim is
more robust and the anisotropy is much clearer.
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Figure 5: Indicator variogram at the 60 ms threghidentified
using cluster analysis
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Figure 6: Indicator variogram at the 1Q0 pp ps threshold
identified using cluster analysis

The indicator variograms corresponding to the 160
threshold are shown in Figure 6. The theoreticdl si
corresponding to that value is 0.09. It can beriefik that
the anisotropy direction corresponding to this bigh
threshold is the 10&zimuth direction. The identified
threshold might correspond to reduced porosityoregdue
to dolomitization and increased porosity regions da
solution vugs or fractures — both of these beirigence of
diagenetic alterations.

In the previous section, the difference betweeal tahd
effective porosity was described as a good indicafo
diagenetic alterations. In Figure 7 below, thedysam of
differences between total and effective porositylisited
corresponding to two clusters — one far< 60ps, and the
other for t > 100us. It can be concluded that the statistical

Modeling diagenetic pathways constrained to
seismic impedance data in a carbonate reservoir

“HYDERABAD 2010"

classification process does yield a robust reptatien of
samples that have been diagenetically altered. When
total porosity value is significantly greater thahe
effective value, it is indicative of the solutiororpsity
being a significant contributor to porosity. On thther
hand when the total porosity is significantly loviban the
effective porosity, calcite filling and porositydwction is
indicated.
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Figure 7: Difference between sonic and effectiveopity within
the two clusters (t < 60pus and t > 100ps).

Since both those extreme thresholds are indicative
porosity alterations due to diagenesis, it was ditito
lump those two clusters in to a common indicatatecof 1
(indicating diagenesis). The remaining cluster|{6G< t <

100 ps) was deemed O (or the unaltered population).
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Indicator variogram models were developed with the simulation. The binary map exhibits anisotropy ime t

anisotropy direction specified to be 2a8zimuth direction. direction of the ridge of the anticlinal structwieserved in
the structural model for the reservoir.

The property of the expectation operator of ancatdir can

be readily extended to the conditional distribution

Fu;z, |(n) = E{l(w;z) | (n)}. Vk=1...K

In indicator Kriging (Goovaerts, 1998; Deutsch and
Journel, 1998) the local conditional distribution @n
estimation node is directly evaluated one threstatlch
time by taking a linear combination of the indicatoded
data at the corresponding threshold:

1w z)—Fuz) = A (I z) - Fu;z)) = F(uwz, | (m) - F(u; z,)

The weights are obtained as solution to the system:

L

ﬁZﬁﬂ[u;zk}-C! [haﬁ;zk ] =C, (h,,:z, ) for a=1,...n
=]

where the indicator covarianc&y (h; z) at lagh are
inferred and modeled from the available data. Sefiple -
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simulation as an extension to indicator Kriging giyn
involves modeling the local conditional probability
distribution {cpdf) at a location using the previous kriging
equation and system and randomly sampling an owcom
from the Icpdf. The sampled outcome is assimilaiealthe
conditioning data set for the next simulation netigted
along a random path. Kriging ensures reproductiothe
data-to-unknown covariance and since the previously
simulated nodes are progressively assimilated th® -
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conditioning data set, the procedure ensures that t o Bl sers.smars.seueTs.saers
covariance between the simulated values reprodhee t
prior model covariance. This in turn ensures tha t

simulated models reflect the spatial features deeme

Figure 8: An indicator simulation realization shagi regions
where the porosity has been altered. The locatibrvell that
condition the realization are shown in the locatimap on the

important. right.

Simulation was performed on a 145 x 215 x 20 gsthgi Figure 8 only indicates one realization of the dated
the aforementioned variogram models and condit@nin model. Repeating this over a suite of realizatiamg can
data along wells as shown in the location map gufé 8 obtain a probability map of reservoir regions likaffected
(right). That figure also shows an XY slice througte of by diagenesis. Such a probability map is showrignré 9.

the simulated realizations obtained using indicator Two slices — one in the XY direction and the otlrethe

T
590675,




XZ directions are shown. Regions in red indicatghhi
probability that the reservoir porosity is altered.
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Figure 9: Probability map of regions in the resértimat are likely diagenetically altered computeetr a suite of 20 realizations.

Diagenetic indicator from seismic inversion

We carried out post-stack seismic inversion of lected
sub- volume of the reservoir. There are four welithin
this area, namely, well 1A, 3D, 4 and 27. The asialyas
restricted to a zone around the main marker honizitiin

a window of +/- 300 ms. In addition to obtainingeth
impedance, another objective was to estimate uaingytin
the inverted acoustic impedance (Al) volume. Altjlothe
uncertainty in Al may be caused by many factors, we
restricted our analysis to two factors: wavelet atatting
Al model. To study the effect of wavelet uncertgirthe
following steps were followed:

¢ We first derived four independent wavelets at the f
well locations using standard wavelet estimation
algorithms with a statistical wavelet followed bgiv
correlation. The four wavelets showed fairly large
variations.

¢ An average wavelet was derived from the four
wavelets.

¢« Low frequency starting Al models were generated
from the interpolated and extrapolated well logsgis
horizons.

e 40 wavelets were drawn at random from within a +/-
10% variation of amplitude and phase of the mean
wavelet.

For each of the 40 wavelets, an Al model was
estimated using the starting Al model.

A mean Al model was generated from the 40 inverted
results.

To study the effect of uncertainty due to startimgdel a
fairly extensive inversion procedure was impleménte
(Sen, 2006; Sen and Stoffa, 1995) as describedvbelo

.

Broad-band Al models were derived at each CMP
location from interpolation and extrapolation ofth
four well logs from the four wells.

At each CMP location, the broad band Al model was
modelled using a fractal model resulting in three
statistical parameters, namely, a mean, a variande
Hurst coefficient.

At each CMP location, we carried out the following
steps:

1. Draw a broad band Al model at random from the
fractional Gaussian distribution described by the
mean, variance and the Hurst coefficient.

2. Use the model derived in step 1 as a starting model
and the mean wavelet derived from the wells inr& no
linear optimization.



3. This results in a broad band Al model at each CMP
location that honours the seismic data and thesstat
derived from the well logs.

4. Go back to step 1.

The grid spacing for the inversion is 12.5 meteyslb.5
meters. The orientation of the 3D field is -45.7d#hree
which is consistent with the anisotropy directions
established earlier. Figure 10 shows the layotii@fregion
over which the inversion was performed including four
wells. The logs at all of these wells contain Dhisdogs

in unit of ps/ft, bulk density (dominantly g/cclrmma ray.
Wells 1A and 3D do not have S-wave log curves, avhil
wells 4 and 27 do.

Pl Mg i Thavemy S rn

1200, 1 3
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missing well logs in certain depth range and thezbaos
marked on the seismic traces to the right of thi vgs.
The plot of an average wavelet derived from the feells
is shown orFigure 12 A suite of well logs (40 samples)
were built around this average wavelet with a siathd
deviation of 10% of the mean value of amplitude phdse
spectra of the average wavelet.

Inversion Results Two initial models of P-wave
impedance for high cut filter and band pass filigsing
information of a wavelet extracted from four wedlisove.
For these two starting models and 40 different \easgeAl

Figure 10: An expanded view of the region from veheeismic data and wells were used in inversiotyaisa(left). A contour
surface display of the main horizon used for inkerss shown on the right.

These four wells and a horizon file containing nfiation
of targeted horizons were used to build Al modklgh cut
and broad band). The data for horizons are in @me
therefore the well logs were converted to time. Apnof
the previously interpreted main horizon is showrrigure
10 on the right.

Examples of well ties with the horizons for the MWebs
are shown irFigure 11 for the well 1A and 3D. Note the

inversion was done. All of these runs converged to
solutions showing good match between synthetic reat
seismic traces. Als at the well locations also medicvery
well.

Four realization of the Al model along a specifiossline
are shown inFigure 13 An average 3D volume of Al
from our study area will be used as secondary iméion
for the diagenetic modeling.
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Figure 13: Results of Al along a particular crbas-for four different realizations of the wavelet

Figure 14: Seismic impedance volume and uncertaiotyputed over a suite of impedance models obtaigedversion.
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The average impedance and uncertainty (standard
deviation) volumes were computed based on all the
inverted results and are shown in Figure 14.

Geostatistical integration of impedance data

The fundamental paradigm in geostatistics is theptiag

of realizations of spatially correlated variablesni the
multivariate conditional distributioP(A|B,C,...) whereA
represents the property being model&l,and C are
conditioning information of various kind. Cokrigingnd
co-simulation (Deutsch and Journel, 1998; Goovaerts
1997; Xu, 1992) permit spatial modeling Afconditioned
to the available information by providing an averioe
model the multivariate conditional probability dibttion
utilizing spatial cross-correlation between the ioas
attributes. An alternate approach is afforded by th
permanence of ratio hypothesis (Journel, 2002)this
hypothesis, the multivariate conditional distriloati is
modeled by merging the univariate distributionsaoixd
by conditioning to individual conditioning data. 0$)

where the measureis defined as the discriminant

ie. X is the relative distance to the occurrencé ofue to
information inB andC. The other measures are similarly
defined:

The exponents$; andt, are regulated by the redundancy
between the information iB and C (Krishnan, 2007). In
the case of unit exponents, the expression abalees to:

i.e., the relative distance to the occurrencé afue toC
remains unaffected by the occurrence of e@ent

The above expression provides a powerful approach t
combining elemental conditional probabilities dedvrom
various data sources and this is exploited fortdsk of
facies modeling. The conditional probabilitf?(A|B)
reflects the probability of diagenesis at a locatioe to the
diagenetic indicator data available at welg This
conditional probability distribution is that deriveby
indicator kriging and utilizes the prior informaticabout
the spatial pattern of diagenesis in the form dfidator
variograms. The information available in the setsdata is
represented by the ter(A|C). Since the relationship
between seismic and diagenesis indicator is impeethe
information in seismic is quantified in the form of
probabilities.

Bayes' rule is used to derive the conditional philis
P(A|C):

where the likelihood is inferred from data by plogt the
histogram of seismic impedance within cluster aflons
deemed diagenetically altered and those that aiktened.

Figure 15 shows the histogram of seismic impedance
within the diaganetically altered and unalterediefs.cIn
order to overcome the problem in inferring the litkeod
P(C|A) due to sparse samples belonging to some
thresholds, smoothing of the experimental histogreas
performed. This smoothing procedure is non-parametr
and utilizes simulated annealing in order to enslia¢ the
smoothed histogram reproduces key statistics.
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Figure 15: Distribution of seismic impedance valuétin the unaltered facies (left) and the diagmadly altered facies (right). The smooth

histogram fits are also shown.

Figure 15 indicates high impedance values correfipgn
to the diagenetically altered facies. Using thepprtion of
facies computed along wells, P(A) and the priotdgisam
of impedance P(B), the conditional probabilitieé\[&) for
various thresholds of impedance were calculateces&h
conditional probabilities for the everA:= diagenetically
altered, is shown in Figure 16 below. As can be sbeth
low and high values of impedance can be indicatfe
diagenetic alterations. This is consistent with ogiy
reduction due to mineral precipitation and porosity
enhancement due to chemical dissolution, both Esualt
of diagenesis.

Figure 16: The probability of diagenetic alteratigimen a seismic
impedance threshold. This is the probability P(A|®) the
permanence of ratio hypothesis.

Once the conditional probabilities on the basis&gmic
are available, the permanence of ratio hypothesis e
applied. Several realizations of the diagenesiscatadr
maps were generated conditioned to both the weditions
and the seismic Al data. The probability of diagesavas
calculated at each location within the volume cdesing
the ensemble of outcomes at that location. Figidrehbws
a slice through the probability volume after corwtiing to
the seismic impedance information. For comparigba,
probability map obtained without conditioning toeth
seismic impedance information for the same volusnalso
shown. It is clear that the seismic impedance dedaides
better delineation of the diagenetic alteratiorigras in the
reservoir.
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Figure 17: Probability of diagenetic alterationvatious locations within the reservoir. The slicetbe left is after conditioning to the seismic

data. The one on the left is obtained unconditicioettie seismic data.

Conclusions

Diagenetic alteration of reservoir petrophysicabparties

is an important aspect of carbonate reservoir niglel
This paper presents a practical approach for mogldéhe
diagenetic pathways using a combination of geologic
analysis, seismic impedance inversion and geostatis
data integration techniques. Geologic analysis igesvan
indication of reservoir regions most likely alterdny
diagenesis. Seismic impedance data can be relatduet
probability of diagenetic alterations at a locatieta
Bayesian analysis. In the geostatistical framewdHe
porosity and gamma ray data are used to distinguish
between the diagenetically altered and the unalttxees.
Cluster analysis is performed to aid in this disdniation.
The seismic impedance data within each of thesedac
types exhibit marked difference. The permanenceatid
hypothesis is used to combine the conditional pritibaof
diagenetic alteration inferred on the basis of $leésmic
impedance with the probability based on the geologi
variability of diagenesis patterns (as implied hyet
semivariograms). The results show that this ddegmtion
approach does indeed result in better delineatibn o
reservoir regions altered by diagenesis.
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