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Introduction  
 
Reservoir characterization often is a complex task that may 
require detailed integration of all available data throughout 
the life of a field. At each stage of reservoir modeling, there 
is a certain degree of uncertainty associated with the quality 
of input data and the modeling procedure chosen. 
Diagenetic alteration of petrophysical properties in a 
reservoir is an important aspect that has significant 
implication on the ultimate productivity of the reservoir. 
This impact is even more significant for carbonate 
reservoirs.    
 
The main mechanisms of dolomitization are associated 
with mixing of fluids, seepage, reflux, burial and 
evaporation. The dolomization zones with respect to 
different depositional environments have been studied by 
numerous researchers (Moore, 2001; Loucks, 1999). Since 
the carbonates are deposited in a ramp type platform, 
mixing of sea-water and meteoric water can be the main 
mechanisms for dolomitization. The mixing zone is mostly 
in the vicinity of ramp where sea water and meteoric water 
zones are adjacent. Moreover, within the vicinity of inner 
ramp lagoon, seepage, reflux of meteoric water and 
evaporation yield dolomitization.    
 
The study and results presented in this paper are for a 
reservoir in the Gulf of Mexico. The reservoir is mostly 
characterized by various facies and different fracture 
networks. One of the important producing zones is the 
Cretaceous breccia facies mainly composed of dolomite 
breccias. Detailed interpretations of rock types, rock 
contents and petrophysical properties for core samples were 
provided. These interpretations reported that the breccia 
formations were deposited in a ramp type carbonate 
platform and tectonic activities yielded fracture networks. 
The depositional environments for some of the core 
samples were identified to be either at the lagoon, barrier or 

slope along the platform. Although previous interpretations 
yielded valuable information, the origin of the breccia zone 
and the vugular porosity were investigated with a view to 
improve the geological model and identify future 
exploration locations and targets.   
 
Geologic Analysis of the brecciated zone  
 
For understanding and determining the origin of breccia 
zone, it is essential to identify the diagenetic events and 
distribution of characteristic facies. Thus, recognition of 
depositional environments such as inner ramp, barrier and 
slope, is crucial. By examining petrophysical properties and 
sedimentological interpretations for corresponding samples, 
specifics of the carbonate ramp environment can be 
constructed.    
 
Using the well log and core data, the thicknesses of breccia 
zone in each well were determined. It was observed that the 
breccia zone thickness initially increases towards east and 
then decreases in well 2031 as shown in Figure 1. This 
change in the thickness may indicate a lateral change in the 
depositional environment. The locations closer to the 
barrier (top of the ramp) are expected to have thicker 
breccias (due to the ramp type platform profile). Towards 
the down-dip direction (away from the barrier), the breccia 
zone thickness should decrease.   
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Figure 1 –Breccia Zone Thicknesses along a WNW-ESE transect 
through the reservoir. 
 
The core samples of Well 48 were interpreted as being 
outside the ramp region where as the sedimentological 
interpretations of Well 27, which is in the vicinity of Well-
128, indicated that the samples were deposited in a ramp 
environment. This indicates a lateral change in depositional 
environment along the platform in east direction. Thus the 
changes in the breccia zone and the previous interpretations 
yield a preliminary result. It can be concluded that the 
barrier of the carbonate platform might be in east direction, 
since the change in thicknesses and previous interpretations 
yield similar results.  
 
Determining a diagenesis indicator based on effective 
porosity   
 
Effective porosity can be calculated using an extended 
Archie equation that utilizes the resistivity and sonic 
porosity logs. In wells where total porosity, as measured by 
the sonic log, along with the effective porosity is available, 
the difference between the two porosity values (if 
significant) can be attributed to diagenesis. The available 
matrix, vugular, fracture and effective porosity data in 
Petrel model were exported in order to examine their 
contributions to effective porosity and compare to the sonic 
porosity distribution.    
 
Figure 2 below shows the porosity contributions from 
matrix, vugular, fracture and effective porosity data as 
calculated by the extended Archie’s equation for Well 4. 

Figure 2 also shows the comparison between the sonic 
porosity and effective porosity values for the same well.    
 
The gaps in Figure 2 are due to the unavailability of the 
data. From Figure 2, it can be observed that matrix porosity 
mostly contributes to effective porosity whereas vugular 
and fracture porosity have limited contributions along the 
well section. Despite the differences in sonic and effective 
porosity values observed in the logs, similar trends are 
observed. By repeating this analysis for other wells, it can 
be concluded that effective porosity in the reservoir is 
mostly affected by matrix porosity. The contribution of 
vugular and fracture porosity is generally limited to distinct 
intervals. It was recognized that for the wells with porosity 
contributions, there exist intervals in which secondary 
porosity features have relatively significant effects. 
Although these intervals are limited, the areal continuity of 
them might indicate continuous paths for paleo-flow 
directions. It was also observed that within the intervals of 
significant secondary porosity features,  sonic porosity and 
effective porosity data show some reasonable variations in 
trends. These variations might be due to the 
interconnectivity of the vugs and fractures some of which 
are identified by sonic log. 
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Figure 2 - Porosity Contributions along well 4 as determined by the extended Archie’s equation (left panel). The comparison between the sonic 
total porosity and effective porosity is shown the right panel. 
 
 
Geostatistical Analysis of Diagenesis   
 
The previous analysis provides a good conceptual 
understanding about the regions of the reservoir that might 
be affected by diagenesis. That understanding is built on 
observations along wells. The subsequent task is to use the 
well information in order to construct spatial models for the 
diagenetic processes. Since there is considerable ambiguity 
in the interpretation of logs and other information in order 
to derive variations in porosity caused by diagenesis, the 
models constructed have to be stochastic so as to provide a 
realistic depiction of uncertainty associated.  
 

 
 
Geostatistical tools are ideal for modeling that uncertainty. 
Consider the following indicator random variable (RV): 
 

 
In this case, we have two classes – either the rock at a 
particular depth may be diagenetically altered or not. The 
indicator RV has the following interesting property: 
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The indicator semi-variogram is a complimentary measure 
that assesses the probability of transitioning from a 
diagenetically altered location to an unaltered location. The 
indicator semi-variogram is defined as:��
�

 
As can be seen in the above, the indicator variogram value 
is high when I(u) is different from I(u+h). 
 
The histogram of sonic � t values for wells in the reservoir 
of interest is shown in Figure 3 below. It can be seen that 
the cdf exhibits an inflexion at � t = 47 µs. This might be 
representative of reservoir rock whose porosity has been 
reduced by diagenetic alterations.   

 

 
Figure 3: Probability distribution of sonic � t values in the breccia 
zone. 
 
Initially indicator variograms were computed in the 0o/90 o 
azimuth directions as well as the 15 o /105 o azimuth 
directions corresponding to a travel time threshold of 47 µs. 
It was inferred that the 0 o/90o directions exhibit a higher 
anisotropy ratio (i.e. the ratio of minor to major range of 
the indicator variograms). This direction of anisotropy is 
approximately consistent with the direction of the 
carbonate ramp determined by looking at the core records. 
Better identification of suitable thresholds for indicator 
variogram calculations was attempted using the scatter plot 
between sonic � t values and corresponding gamma ray 
values. The scatter plot was analyzed using k-mean cluster 

analysis (Coleman, 2000).  Figure 4 shows the histogram of 
sonic � t values within each cluster when the analysis was 
performed specifying 3 clusters. Based on the histograms in 
Figure 4, it can be inferred that corresponding to a 
threshold of 70 µs, there is a clear distinction in the 
histogram of cluster 2 compared to all the other clusters.   

 

 

 
Figure 4: Histogram of sonic � t within each cluster when the 
analysis is performed with 3 clusters. 
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Indicator variogram was calculated in the 0o, 90o, 15o and 
105o azimuth directions corresponding to a sonic � t 
threshold of 60 µs and shown in Figure 5. The theoretical 
sill value (p*(1-p)) at that threshold is 0.25. It can be seen 
that the variogram indicates maximum anisotropy in the 90o 
azimuth direction. This is consistent with the observation in 
the previous report. However, in contrast to the variogram 
presented in the previous report, the computed variogram is 
more robust and the anisotropy is much clearer. 
 

 
Figure 5: Indicator variogram at the 60 ms threshold identified 
using cluster analysis 
 

 
Figure 6: Indicator variogram at the 100 µ µµ µs threshold 
identified using cluster analysis 
 
The indicator variograms corresponding to the 100 µs 
threshold are shown in Figure 6. The theoretical sill 
corresponding to that value is 0.09. It can be inferred that 
the anisotropy direction corresponding to this higher 
threshold is the 105oazimuth direction.  The identified 
threshold might correspond to reduced porosity regions due 
to dolomitization and increased porosity regions due to 
solution vugs or fractures – both of these being evidence of 
diagenetic alterations. 
 
In the previous section, the difference between total and 
effective porosity was described as a good indicator of 
diagenetic alterations. In Figure 7 below, the histogram of 
differences between total and effective porosity is plotted 
corresponding to two clusters – one for � t < 60 µs, and the 
other for � t > 100 µs. It can be concluded that the statistical 

classification process does yield a robust representation of 
samples that have been diagenetically altered. When the 
total porosity value is significantly greater than the 
effective value, it is indicative of the solution porosity 
being a significant contributor to porosity. On the other 
hand when the total porosity is significantly lower than the 
effective porosity, calcite filling and porosity reduction is 
indicated. 
 

 

 
Figure 7: Difference between sonic and effective porosity within 
the two clusters (� t < 60 µs and � t > 100 µs). 
 
Since both those extreme thresholds are indicative of 
porosity alterations due to diagenesis, it was decided to 
lump those two clusters in to a common indicator code of 1  
(indicating diagenesis). The remaining cluster (60 µs < � t < 
100 µs) was deemed 0 (or the unaltered population). 
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Indicator variogram models were developed with the 
anisotropy direction specified to be 105oazimuth direction. 
 
The property of the expectation operator of an indicator can 
be readily extended to the conditional distribution: 

 
 
In indicator Kriging (Goovaerts, 1998; Deutsch and 
Journel, 1998) the local conditional distribution at an 
estimation node is directly evaluated one threshold at a 
time by taking a linear combination of the indicator coded 
data at the corresponding threshold: 
 

 
The weights are obtained as solution to the system: 
 

 
where the indicator covariances C1 (h; zk) at lag h are 
inferred and modeled from the available data. Sequential 
simulation as an extension to indicator Kriging simply 
involves modeling the local conditional probability 
distribution (lcpdf) at a location using the previous kriging 
equation and system and randomly sampling an outcome 
from the lcpdf. The sampled outcome is assimilated into the 
conditioning data set for the next simulation node visited 
along a random path. Kriging ensures reproduction of the 
data-to-unknown covariance and since the previously 
simulated nodes are progressively assimilated into the 
conditioning data set, the procedure ensures that the 
covariance between the simulated values reproduce the 
prior model covariance. This in turn ensures that the 
simulated models reflect the spatial features deemed 
important. 
 
Simulation was performed on a 145 x 215 x 20 grid using 
the aforementioned variogram models and conditioning 
data along wells as shown in the location map in Figure 8 
(right). That figure also shows an XY slice through one of 
the simulated realizations obtained using indicator 

simulation. The binary map exhibits anisotropy in the 
direction of the ridge of the anticlinal structure observed in 
the structural model for the reservoir. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 

�

 
 
Figure 8: An indicator simulation realization showing regions 
where the porosity has been altered. The location of well that 
condition the realization are shown in the location map on the 
right.  
 
Figure 8 only indicates one realization of the simulated 
model. Repeating this over a suite of realizations, one can 
obtain a probability map of reservoir regions likely affected 
by diagenesis. Such a probability map is shown in Figure 9. 
Two slices – one in the XY direction and the other in the 
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XZ directions are shown. Regions in red indicate high 
probability that the reservoir porosity is altered.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Probability map of regions in the reservoir that are likely diagenetically altered computed over a suite of 20 realizations. 
 
 
Diagenetic indicator from seismic inversion   
 
We carried out post-stack seismic inversion of a selected 
sub- volume of the reservoir.  There are four wells within 
this area, namely, well 1A, 3D, 4 and 27. The analysis was 
restricted to a zone around the main marker horizon within 
a window of +/- 300 ms. In addition to obtaining the 
impedance, another objective was to estimate uncertainty in 
the inverted acoustic impedance (AI) volume. Although the 
uncertainty in AI may be caused by many factors, we 
restricted our analysis to two factors: wavelet and starting 
AI model. To study the effect of wavelet uncertainty, the 
following steps were followed: 
 
•�� We first derived four independent wavelets at the four 

well locations using standard wavelet estimation 
algorithms with a statistical wavelet followed by well 
correlation. The four wavelets showed fairly large 
variations.  

•�� An average wavelet was derived from the four 
wavelets. 

•�� Low frequency starting AI models were generated 
from the interpolated and extrapolated well logs using 
horizons.  

•�� 40 wavelets were drawn at random from within a +/- 
10% variation of amplitude and phase of the mean 
wavelet.  

 
 
 
 
•�� For each of the 40 wavelets, an AI model was 

estimated using the starting AI model.  
•�� A mean AI model was generated from the 40 inverted 

results. 
 
To study the effect of uncertainty due to starting model a 
fairly extensive inversion procedure was implemented 
(Sen, 2006; Sen and Stoffa, 1995) as described below: 
 
•�� Broad-band AI models were derived at each CMP 

location from interpolation and extrapolation of the 
four well logs from the four wells.  

•�� At each CMP location, the broad band AI model was 
modelled using a fractal model resulting in three 
statistical parameters, namely, a mean, a variance and 
Hurst coefficient.  

•�� At each CMP location, we carried out the following 
steps:  

 1.� Draw a broad band AI model at random from the 
fractional Gaussian distribution described by the 
mean, variance and the Hurst coefficient.  

 2.� Use the model derived in step 1 as a starting model 
and the mean wavelet derived from the wells in a non-
linear optimization.  
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 3.� This results in a broad band AI model at each CMP 
location that honours the seismic data and the statistics 
derived from the well logs.  

 4.� Go back to step 1. 
 
The grid spacing for the inversion is 12.5 meters by 12.5 
meters. The orientation of the 3D field is -45.740 degree 
which is consistent with the anisotropy directions 
established earlier. Figure 10 shows the layout of the region 
over which the inversion was performed including the four 
wells. The logs at all of these wells contain DT sonic logs 
in unit of µs/ft, bulk density (dominantly g/cc), gamma ray. 
Wells 1A and 3D do not have S-wave log curves, while 
wells 4 and 27 do. 

 
 
 
 
These four wells and a horizon file containing information 
of targeted horizons were used to build AI models (high cut 
and broad band). The data for horizons are in time and 
therefore the well logs were converted to time. A map of 
the previously interpreted main horizon is shown in Figure 
10 on the right. 
 
Examples of well ties with the horizons for the well logs 
are shown in Figure 11 for the well 1A and 3D. Note the 

missing well logs in certain depth range and the horizons 
marked on the seismic traces to the right of the well logs. 
The plot of an average wavelet derived from the four wells 
is shown on Figure 12. A suite of well logs (40 samples) 
were built around this average wavelet with a standard 
deviation of 10% of the mean value of amplitude and phase 
spectra of the average wavelet. 
 
Inversion Results: Two initial models of P-wave 
impedance for high cut filter and band pass filter, using 
information of a wavelet extracted from four wells above. 
For these two starting models and 40 different wavelets, AI  
 
 

 
 
 
inversion was done. All of these runs converged to 
solutions showing good match between synthetic and real 
seismic traces. AIs at the well locations also matched very 
well. 
 
Four realization of the AI model along a specific crossline 
are shown in Figure 13.  An average 3D volume of AI 
from our study area will be used as secondary information 
for the diagenetic modeling. 
 

Figure 10: An expanded view of the region from where seismic data and wells were used in inversion analysis (left). A contour 
surface display of the main horizon used for inversion is shown on the right. 

�
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Figure 11: Examples of well log and well ties for well 1A (left); and for well 4 (right). Note the zones of missing well log information where the 
values are interpolated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 12: Plot of an average wavelet derived from the four well locations. 
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Figure 13:  Results of AI along a particular cross-line for four different realizations of the wavelet. 

�

 
Figure 14: Seismic impedance volume and uncertainty computed over a suite of impedance models obtained by inversion. 

�
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The average impedance and uncertainty (standard 
deviation) volumes were computed based on all the 
inverted results and are shown in Figure 14. 
 
Geostatistical integration of impedance data  
 
The fundamental paradigm in geostatistics is the sampling 
of realizations of spatially correlated variables from the 
multivariate conditional distribution P(A|B,C,…), where A 
represents the property being modeled, B and C are 
conditioning information of various kind. Cokriging and 
co-simulation (Deutsch and Journel, 1998; Goovaerts, 
1997; Xu, 1992) permit spatial modeling of A conditioned 
to the available information by providing an avenue to 
model the multivariate conditional probability distribution 
utilizing spatial cross-correlation between the various 
attributes. An alternate approach is afforded by the 
permanence of ratio hypothesis (Journel, 2002). In this 
hypothesis, the multivariate conditional distribution is 
modeled by merging the univariate distributions obtained 
by conditioning to individual conditioning data. Thus, 

 

where the measure x is defined as the discriminant 

 
ie. x is the relative distance to the occurrence of A due to 
information in B and C. The other measures are similarly 
defined: 

 
The exponents t 1 and t 2 are regulated by the redundancy 
between the information in B and C (Krishnan, 2007). In 
the case of unit exponents, the expression above reduces to: 
 

 
i.e., the relative distance to the occurrence of A due to C 
remains unaffected by the occurrence of event B. 

The above expression provides a powerful approach to 
combining elemental conditional probabilities derived from 
various data sources and this is exploited for the task of 
facies modeling. The conditional probability P(A|B) 
reflects the probability of diagenesis at a location due to the 
diagenetic indicator data available at wells B. This 
conditional probability distribution is that derived by 
indicator kriging and utilizes the prior information about 
the spatial pattern of diagenesis in the form of indicator 
variograms. The information available in the seismic data is 
represented by the term P(A|C). Since the relationship 
between seismic and diagenesis indicator is imprecise, the 
information in seismic is quantified in the form of 
probabilities.   
 
Bayes’ rule is used to derive the conditional probability 
P(A|C): 

 
where the likelihood is inferred from data by plotting the 
histogram of seismic impedance within cluster of locations 
deemed diagenetically altered and those that are unaltered.   
 
Figure 15 shows the histogram of seismic impedance 
within the diaganetically altered and unaltered facies. In 
order to overcome the problem in inferring the likelihood 
P(C|A) due to sparse samples belonging to some 
thresholds, smoothing of the experimental histogram was 
performed. This smoothing procedure is non-parametric 
and utilizes simulated annealing in order to ensure that the 
smoothed histogram reproduces key statistics.   
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Figure 15: Distribution of seismic impedance values within the unaltered facies (left) and the diagenetically altered facies (right). The smooth 
histogram fits are also shown. 
 
 
Figure 15 indicates high impedance values corresponding 
to the diagenetically altered facies. Using the proportion of 
facies computed along wells, P(A) and the prior histogram 
of impedance P(B), the conditional probabilities P(A|C) for 
various thresholds of impedance were calculated. These 
conditional probabilities for the event: A =  diagenetically 
altered, is shown in Figure 16 below. As can be seen, both 
low and high values of impedance can be indicative of 
diagenetic alterations. This is consistent with porosity 
reduction due to mineral precipitation and porosity 
enhancement due to chemical dissolution, both as a result 
of diagenesis. 
 

 
 
Figure 16: The probability of diagenetic alteration given a seismic 
impedance threshold. This is the probability P(A|C) in the 
permanence of ratio hypothesis. 
 

 
 
Once the conditional probabilities on the basis of seismic 
are available, the permanence of ratio hypothesis can be 
applied. Several realizations of the diagenesis indicator 
maps were generated conditioned to both the well locations 
and the seismic AI data. The probability of diagenesis was 
calculated at each location within the volume considering 
the ensemble of outcomes at that location. Figure 17 shows 
a slice through the probability volume after conditioning to 
the seismic impedance information. For comparison, the 
probability map obtained without conditioning to the 
seismic impedance information for the same volume is also 
shown. It is clear that the seismic impedance data provides 
better delineation of the diagenetic alteration patterns in the 
reservoir. 
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Figure 17: Probability of diagenetic alteration at various locations within the reservoir. The slice on the left is after conditioning to the seismic 
data. The one on the left is obtained unconditioned to the seismic data. 
 
Conclusions  
 
Diagenetic alteration of reservoir petrophysical properties 
is an important aspect of carbonate reservoir modeling. 
This paper presents a practical approach for modeling the 
diagenetic pathways using a combination of geologic 
analysis, seismic impedance inversion and geostatistical 
data integration techniques. Geologic analysis provides an 
indication of reservoir regions most likely altered by 
diagenesis. Seismic impedance data can be related to the 
probability of diagenetic alterations at a location via 
Bayesian analysis. In the geostatistical framework, the 
porosity and gamma ray data are used to distinguish 
between the diagenetically altered and the unaltered facies. 
Cluster analysis is performed to aid in this discrimination. 
The seismic impedance data within each of these facies 
types exhibit marked difference. The permanence of ratio 
hypothesis is used to combine the conditional probability of 
diagenetic alteration inferred on the basis of the seismic 
impedance with the probability based on the geologic 
variability of diagenesis patterns (as implied by the 
semivariograms). The results show that this data integration 
approach does indeed result in better delineation of 
reservoir regions altered by diagenesis. 
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