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Equivalent Media Theory

In seismic frequency band, closely spaced parallel
fractures behave like an anisotropic medium. A number of
equivalent media theories were proposed in the last two
decades. The most general and accurate equivalent media
theories were proposed by Hudson (1980) and Schoenberg
(1980) for penny-shaped cracks and planar discontinuities
(fractures), respectively. Even though both the approaches
are completely different, they result in the same equivalent
elastic coecients for cracks and fractures. This observation
suggests that the shape of the fractures cannot be uniquely
resolved by seismic methods. The equivalent elastic coe
cients are expressed in terms of fracture parameters such as
fracture orientation, fracture or crack density and fracture in
fill (gas or fluid).

Finite-Difference Modeling in Anisotropic
Media

Numerical modeling of wave propagation is an
important tool for both earthquake- and exploration-
seismologists.

It has been used for forward modeling in the inverse
problems to support the interpretation of seismic data and
to understand the wave propagation in complex media. There
are a number of techniques to simulate wave propagation
numerically, and a comprehensive review can be found in
Carcione et al. (2002). Finite-di”erence scheme, even though
computationally expensive compared to other schemes, most
accurately simulates the wave propagation because it directly
solves the wave-equation. Hence, this scheme accounts not
only for the direct waves, re ected waves, multiply reflected
waves, but also for surface waves, head waves, and waves
in ray-shadow zone (Kelly et al., 1976).
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Summary

We propose modeling of fractured reservoirs based on equivalent media theory. A 3D fnite-differnce scheme was
developed to simulate wave propogation in arbitrary anisotropic media. The anisotropic media upto orthorhombic symmetry
using Standard Staggered Grid scheme (SSG) and beyond (monoclinic and triclinic) were modeled using Rotated Staggered
Grid scheme (RSG). Observation of the horizontal component seismogram confirms the fact the S-wave data alone cannot
distinguish between gas- and fluid-filled fractures.

Finite-difference scheme can be implemented either
by velocity-stress formulation or by displacement-stress
formulation (Virieux, 1984). Here, we implement the
velocity-stress formulation to simulate the wave propagation
in anisotropic media.

Basic Numerical Procedure

Equation of motion is given as (Aki and Richards,
2002)

 ρuι  = σij,j +f
i

(1)
and constitutive relationship for general anisotropic

media can be written as
σij,j = C

ij
kluk,l,                                                   (2)

where ui is the particle displacement, σi is the stress
tensor, fi is the body force per unit volume, and cijkl
summarizes the elastic properties of the medium. Equations
1 and 2 are linear first-order coupled equations for particle
displacement or velocity, and stress. Taking first time
derivative of equation 2 and substituting velocity of the
particle for displacement in equation 1, we obtain a first-
order system of equations in velocity and stress which can
be solved numerically. Standard Staggered Grid (SSG)
Finite-Difference Scheme

To implement finite-difference scheme, all the
quantities (cijkl,  ρ, σij, ui) in equations 1 and 2 need to be
discretized.

Virieux (1984) first described a standard way of
discretization of these quantities in a staggered grid (figure
1(a)).

The main advantage of using the staggered grid is
that the spatial derivatives are calculated at half the grid
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Fig. 1: (a) Elementary cell of standard staggered grid: Notice that σxz is
not defined at the location of stiffness tensor c

ijkl
. Density ρ of

the medium is also not defined at the location where particle
velocities vx and vz are defined. This necessitates the interpolation
of the cijkl and ρ. (b) Elementary cell of rotated staggered grid:
Notice that all the components of the stress are defined at the
same location. Hence, no interpolation of the stiffness tensor c

ijkl

is needed. But the density ρ of the medium still needs to be
interpolated to estimate the particle velocities vx and vz.

points. It should be noted that grid size is an important
parameter in finite-diffrence scheme. Large grid size allows
for computation of large models, but very large grid size
tends to push the numerical dispersion in the computation
outof acceptable limits (e.g., Marfurt, 1984). Furthermore,
small grid size requires small time-steps to avoid numerical
instability, which will increase the computation time.

In the staggered grid discretization (figure 1(a)),
some coefficients of the elastic stiffness matrix c

ijkl
 and

density ρ need to be interpolated to compute the off-diagonal
stress components (in 2D that is σ

xz
, and in 3D those are σ

yz
,

σ
xy

, σ
xy

) and the particle velocities, respectively. Moreover,
if the medium posses the symmetry lower than orthorhombic,
which is the case if the medium has two sets of non-
orthogonal fracture sets, some components of the strain or
particle velocities need to be interpolated to compute the
Hook sum (equation 2).

To test the accuracy of this method, wave
propagation was simulated in a large model of HTI media
(figure 2(a)). The elastic constants of the medium are as
follows (the factor of 109 N/m2 is omitted): c

11
= 15:0,

c
33

=30.0, c
13 

= 4.0, c
44

 = 8.0, and c
55

= 4.0. The density of the
medium is 2000 kg/m3

The model has 450 grid points with equal grid
spacing of 10 m in all the directions. An explosive source is
placed at the center of the model. The source wavelet is a
Gaussian with a dominant frequency of 15 hz. A snapshot in
3D at 400 ms after the explosion is shown in figure 2(a).

Rotated Staggered Grid (RSG) Finite-Di”erence
Scheme As mentioned earlier, in case of medium symmetry
lower than orthorhombic, standard staggered grid
discretization turns out to be error prone. To calculate the
synthetic section in monoclinic or triclinic media a better
grid discretization is needed. The straightforward solution
seems to be defining all components of stress at one grid
location and all components of the particle velocity at the
next grid location. But this scheme will require huge
computer memory and longer computation time to run a
realistic model. To circumvent this problem, another
discretization scheme in a rotated staggered grid was
proposed by Gold et al. (1997). Here, for the sake of
simplicity, discretization is explained in 2D. The medium is
divided into rectangular or square grids or cells. All the
particle velocities are defined at the nodes of the cell. All
the components of stress, strain and medium properties
(c

ijkl 
and ρ) are defined at the center of the cell (figure 1(b)).

Now, either the elastodynamic equations 1 and 2 can be
rotated along the diagonals of the cell and spatial derivatives
of velocities and stress components can be calculated at the
appropriate grid locations, or spatial derivatives can be first
calculated along diagonals of the cells and then transformed
back along the edges of the cells. It turns out that the algebra
involved is not very complicated in the second approach,
and hence, it can be implemented numerically with ease (e.g.,
Saenger et al., 2000).

We implemented this scheme in 3D for general
anisotropic media with 21 independent elastic constants. To
test the robustness and stability of this method in general
anisotropic media, wave propagation in a large model of a
homogeneous triclinic medium was simulated. An explosion
source is kept at the center of the model. The dominant
frequency of the Ricker wavelet is 15 hz. Figure 2(b) shows
a snapshot of wave propagation in 3D at 400 ms after
explosion. All three types of waves (qP, qS1, and qS2) can
be identified.

Modeling Examples

To test the accuracy of the modeling algorithms
and to simulate the fracture response in surface seismic data,
a number of 3D shotgathers were generated for various
subsurface models. Both explosive source and plane-wave
shear source were used to generate these seismic sections.

A typical three at-layered subsurface model (Figure
3) was used to generate all the seismic sections. Although
the finite-difference algorithms are capable of handling
subsurface models with complex geometry, at-layered
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models were used to study the fracture response in the seismic
data. Top and bottom layers are isotropic, and the middle
layer has one set of vertical parallel fractures. Background
P-wave and S-wave velocities α, β  and density ρ in each
layer are: 2.5 km/s, 1.4 km/s and 1 g/cm3 ; 3.5 km/s, 2.0 km/
s and 2.3 g/cm3 ; 4.5 km/s, 3.0 km/s and 3.5 g/cm3 .There are
141 and 86 geophones at the interval of 10 meters in x- and
y-direction, respectively. For convenience, lines along x-and
y-axes will be called x-line and y-line, respectively. The shot
is at the middle of y-axis. The near-offset is 150 meters in x-
direction. The survey layout remains the same for all the
seismic experiments.

Fractures density e in the middle layer is 0.05;
fractures can be either gas- or water-filled, and are striking
in y-direction (fracture normal is parallel to x-direction). ∆N
and ∆T are used to estimate the equivalent stiffness matrix
for the middle layer (see Bakulin et al., 2000 for details).
Table 1 summarizes all the relevant parameters for the  Figure

Fig.2: A snapshot (x-velocity) after 400 time steps (400 ms) in: (a) HTI
medium. The model is a homogeneous block with 450 grid points
(grid spacing 10 m) in all the directions. Both P-, SV-waves can be
observed. Notice the triplication in SV-wave in yz-and xy-plane ;
(b) triclinic medium. All three types of wave qP1, qS1, and qS2
can be identified.

Fig. 3:This is the three at-layered subsurface model used to generate shot
gathers. Middle layer has one set of vertical fractures striking in y-
direction (fracture normal is parallel to x-direction). Crack or
fracture density e is 0.05

Table 1: Notice that ∆T remains same for gas- and water-filled
fractures. Thus, c

44 
and c

55 
of stiffess matrix remains

samefor gas- and water-filled fractures which implies that
vertical S-wave velocities S  and S⊥ in both the cases also
remain the same.

Fig.4 : Shotgathers using an explosive source: (a) x-component of velocity
vx, (b) y-component of velocity vy. Notice the time-difference at
near-offset in the arrivals at 1.5 s in both the sections. This time-
di”erence is attributed to the presence of vertical fractures in the
middle layer (figure 3). Finite-Difference Modeling middle layer.
Relevant parameters of the middle layer in subsurface model
(Figure 3)

4 shows an x-line at y-location 20 meter from the shot
generated using an explosive source when the middle layer
has gas-filled fractures. A Gaussian wavelet with dominant
frequency of 15 hz was used as source function. Although
all three velocity components vx, vy and vz were recorded,
only vx (figure 4(a)) and vy (figure 4(b)) are displayed to
observe the S-wave splitting due to presence of the fractures
in the middle layer. Reflection about 1.5 s is the converted

S-wave from the interface between middle layer and bottom
layer. Notice the time-difference between vx and vy arrivals
at near-offset at 1.5 s; vx arrivals are polarized normal to
fracture strike and vy arrivals are polarized parallel to fracture
strike. Thus, vx are traveling slower than vy.

Above experiment was simulated with a plane-wave
shear source. The particle motion is polarized linearly at 45
clockwise from x-axis; i.e., vx and vy are excited in phase
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with equal amplitudes. Figure 5 shows the vx and vy for
both gas-filled (Figures 5(a) and 5(b)) and water-filled
(Figures 5(c) and 5(d)) fractures. Notice the time-di”erences
between vx and vy arrivals for both the cases; they appear to
be same. This is due to the fact that constants c44 and c55 in
stiffness matrix remain same for gas- and water-filled
fractures, which eventually leads to same vertical S-wave
velocities (S  and S⊥ )  in both the cases. This observation

suggests that stacked S-wave sections are unable to reveal
the fracture-infill (gas or water) in the subsurface. Hence,
some other techniques (e.g., AVO analysis, P-wave NMO
analysis, S-wave NMO-analysis) need to be applied to fully
characterize fractures in the subsurface.

Discussion and Future Work

So far, we have shown the results only from at
layers. We are planning to simulate the wave propagation in
more complex models to understand the combined e”ect of
anisotropy and complex structures.
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Fig.5: Seismic sections using a plane-wave source. (a) x-component of
velocity vx for gas-filled fractures, (b) y-component of velocity vy
for gas-filled fractures, (c) x-component of velocity vx for water-
filled fractures, (d) y-component of velocity vy for water-filled
fractures. Notice the time-di”erence in the arrivals about 1.8 s
between vx and vy sections. It is same for gas- and water-filled
fractures because vertical S-wave velocities (S  and S⊥ ) are the
same in both the cases.


