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ABSTRACT 

Seismic wave propagation through different subsurface 

geological structures plays a pivotal role for accurate imaging 

of the target zones of interest. There are several techniques 

available for numerical simulation of seismic wave propagation 

through different media. We have used acoustic finite-

difference full-wave modelling using staggered-grid approach 

by employing both free-surface boundary-condition (at top) 

and perfectly-matched-layer (PML) absorbing-boundary-

condition (at other three sides) for the model boundaries. This 

method is very accurate and computationally efficient for 

seismic wave propagation and considerably reduces the 

spurious arrivals mainly occurring due to numerical dispersion, 

back-scattered noises and multiples. The staggered-grid 

approach increases spatial resolution and stability of the 

wavefield simulation, which allow for the efficient propagation 

of seismic waves in complex subsurface geological structures. 

We validate the method by running benchmark tests for 

different models and compared the corresponding results. The 

results obtained indicate that the method employed is 

successful in modelling and imaging of flat-horizonal layer and 

complex geological structures like a gently dipping syncline 

and anticline model as well as a complex graben model with 

combination of the above two structures by minimizing the 

artifacts. We have also reduced the effect of multiple 

reflections, back-scattered noise, and other spurious arrivals 

using two-way acoustic wave-equation with free-surface and 

PML absorbing-boundary-condition constraints, resulting 

high-quality synthetic seismic data. These synthetic seismic 

data generated have been further used for efficient imaging 

by employing the 2-D wave-equation based finite-difference 

pre-stack depth migration (FDMIG). 
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INTRODUCTION 

Full-wave modelling using acoustic and elastic finite-

difference (FD) techniques play pivotal role for 

subsurface imaging of complex geological structures 

having steeply dipping target zones, whereas the other 

methods generally encounter several different 

problems. The ability to model and accurately simulate 

seismic wavefield through the complex subsurface 

geological structures are very important for detecting 

target zones of interest for hydrocarbon or mineral 

explorations. Hence, the compute-intensive and robust 

numerical methods such as acoustic and elastic FD full-

wave modelling are very popular now-a-days and 

increasingly used to address these challenges of 

imaging complex geological structures amenable for 

delineating potential zones of hydrocarbon and mineral. 

The computation generally increases many folds when 

the subsurface geological structures are heterogeneous 

and anisotropic in which several numerical phases, back-

scattered noises and artifacts are generated (Behera and 

Tsvankin, 2009; Behera, 2022). To handle these issues, 

suitable perfectly-matched-layer (PML) absorbing-

boundary-conditions (ABC) and free-surface boundary-

conditions are being applied with the staggered-grid FD 

scheme for both the wavefield simulation and 

generation of synthetic seismic data. The synthetic 

seismic data generated using this approach are 

generally free from surface-waves, multiples and back-

scattered noises, which are highly dominant in the data 

when other modelling techniques are used. The main 

goal of this study is to demonstrate the application of 

FD method using staggered-grid approach with the help 

of PML absorbing-boundary-conditions for modelling 

and simulate the wavefields for a very simple and 

moderately complex geological models. This will help in 

the computation of full-wave synthetic seismic data and 

application of robust and highly compute intensive 

seismic imaging technique like 2-D wave-equation 

based finite-difference pre-stack depth migration 

(FDMIG) for accurate imaging of these geological 

structures of interest. 
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METHODOLOGY 

Finite-difference modelling 

The acoustic finite-difference (FD) method is considered 

as an efficient approach for wavefield simulation 

through complex geological structures and 

computation of full-wave synthetic seismic data as 

compared to other different numerical techniques due 

to its low computational cost, easy implementation and 

less computer memory requirements. This method is 

particularly useful when analytical solutions to wave 

equations are difficult or impossible to obtain especially 

in complex models. This technique involves discretizing 

the continuous partial-differential equations governing 

the wave propagation through the model grid, where 

the wavefield values are approximated at discrete points 

in space and time. For wave propagation through a 

media, the corresponding wave equation is generally 

expressed as: 

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2 = 𝐶2𝛻2𝑢(𝑥, 𝑡)   (1) 

where 𝑢(𝑥, 𝑡) is the wavefield (such as pressure or 

displacement), 𝐶 is the velocity of the waves and 𝛻2 is 

the Laplacian operator representing the spatial second 

derivatives. For computational efficiency, the numerical 

simulations often rely on discretizing the governing 

equation (Equation 1) using grid systems. These grids 

can be classified into nonstaggered- and staggered-grid 

schemes. The main difference between these two 

approaches relies on how the variables (e.g., velocity and 

pressure) are positioned on the grids. To understand the 

finite-difference full-wave modelling procedure and 

generation of synthetic seismic data, we have presented 

a flow-chart (Figure 1) to illustrate the different steps 

involved in modelling having FD kernels along with the 

shot and time loop for the generation of source 

wavefield and snapshots of the receiver wavefield 

followed by storage of the synthetic seismic data. The 

FD full-wave modelling generally employs two different 

approaches for wavefield simulation called 

nonstaggered- and staggered-grid for arrangement of 

the variables (i.e., pressure and velocities) on a numerical 

mesh. The choice of these two approaches has direct 

impact on the FD solver for stability, accuracy and ease 

of implementation.    

  

Non-staggered-grid approach 

A nonstaggered-grid also known as collocated or 

central-grid (Bartolo et al., 2012) generally stores all the 

variables in the same grid point. This means that for a 

2D problem, the velocity components 𝑉𝑥 and 𝑉𝑧 (for 𝑥 

and 𝑧 directions) as well as the pressure field 𝑃 are 

defined at the same grid point. Hence, the 

computational grid is easier to set up, since all variables 

are stored in the same location and direct interpolation 

of all the variables is possible. Hence, the interpolation 

of boundary conditions for the source term becomes 

easier. On the other hand, the disadvantage of 

nonstaggered-grid scheme is that they suffer from 

numerical challenges due to the coupling of pressure 

and velocity fields. Since, the pressure and velocities are 

estimated at the same grid points, this can lead to 

problems due to non-physical pressure oscillations 

causing less numerical stability. Without staggering, the 

errors in pressure and velocity fields spread very easily, 

resulting computational instability. For an acoustic 

medium, the wave equations are generally expressed by 

the first-order linearized system of Newton's and 

Hooke's law as (Thorbecke, 2017):  

𝜕𝑉𝑥

𝜕𝑡
= −

1

𝜌
(

𝜕𝑃

𝜕𝑥
)   

 
𝜕𝑉𝑧

𝜕𝑡
= −

1

𝜌
(

𝜕𝑃

𝜕𝑧
)                                          (2)                                                                      

𝜕𝑃

𝜕𝑡
= −

1

𝜅 
(

𝜕𝑉𝑥

𝜕𝑥
+ 

𝜕𝑉𝑧

𝜕𝑧
)  

where 𝑉𝑥 and 𝑉𝑧 are particle velocity components in 𝑥- 

and 𝑧-direction respectively, 𝑃 is the acoustic pressure, 

𝜌 is the density of the medium and κ  is the 

compressibility. 

A basic (nonstaggered) finite-difference grid is used for 

the acoustic wave equation producing a numerically 

stable scheme in FD modelling. The nonstaggered-grid 

scheme takes into account the pressure at discrete 

locations that are equally spaced in time (Δ𝑡) and spatial 

direction (ℎ=Δ𝑥=Δ𝑧). By employing the Taylor-series 

expansions to obtain the known central-difference 

operators, each derivative of the wave equation can be 

roughly calculated. The wave equation for a 2D acoustic 

media can be expressed as (Bartolo et al., 2012): 

 
𝜕2𝑃

𝜕𝑡2 = 𝐶2 (
𝜕2𝑃

𝜕𝑥2 +
𝜕2𝑃

𝜕𝑧2) + 𝐹(𝑥, 𝑧, 𝑡)      (3) 
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The corresponding second-order approximations of the 

above wave equation (Equation 3) can be expressed as:   

𝜕2𝑃

𝜕𝑡2 =
𝑃𝑖,𝑗

𝑛−1−2𝑃𝑖,𝑗
𝑛 +𝑃𝑖,𝑗

𝑛+1

∆𝑡2 , 

𝜕2𝑃

𝜕𝑥2 =
𝑃𝑖−1,𝑗

𝑛 −2𝑃𝑖,𝑗
𝑛 +𝑃𝑖+1,𝑗

𝑛

∆𝑥2 ,       (4) 

𝜕2𝑃

𝜕𝑧2 =
𝑃𝑖,𝑗−1

𝑛 −2𝑃𝑖,𝑗
𝑛 +𝑃𝑖,𝑗+1

𝑛

∆𝑧2   

where 𝑃 is the wave propagation in the 𝑥, 𝑧, 𝑡 and 

𝐹(𝑥, 𝑧, 𝑡) is the corresponding source wavefield. The grid 

spacing in 𝑥 and 𝑧 direction is represented as ∆𝑥 and Δ𝑧 

having traveltime interval of ∆𝑡 with 𝑛 as the number of 

discrete time steps (i.e., 𝑡 = 𝑛∆𝑡) and 𝐶 as the velocity of 

the waves through the media. The source time function 

used is the Ricker wavelet. After simplification of 

equation (4), the final nonstaggered-grid pressure 

wavefield for the acoustic media can be expressed as: 

𝑃𝑖,𝑗
𝑛+1 =

∆𝑡2

∆𝑥2 ∗ 𝐶2(𝑖, 𝑗) ∗ [𝑃𝑖−1,𝑗
𝑛 − 2𝑃𝑖,𝑗

𝑛 + 𝑃𝑖+1,𝑗
𝑛 ] +

∆𝑡2

∆𝑧2 ∗ 𝐶2(𝑖, 𝑗) ∗ [𝑃𝑖,𝑗−1
𝑛 − 2𝑃𝑖,𝑗

𝑛 + 𝑃𝑖,𝑗+1
𝑛 ] + 𝐹(𝑥, 𝑧, 𝑡) ∗ ∆𝑡2 + 2𝑃𝑖,𝑗

𝑛 − 𝑃𝑖,𝑗
𝑛−1   (5)                                              

Figure 1: Flow-chart showing staggered-grid finite-difference (FD) full-wave modelling algorithm having the kernel of the acoustic 

scheme used for wavefield simulation and generation of synthetic seismic data. The two decision loops are for the number of shot 

positions and the number of time-steps to be modelled. In the flow-chart, the time is represented by 𝑡, horizontal and vertical particle 

velocity by 𝑉𝑥 and 𝑉𝑧, respectively, and 𝑃 is the acoustic pressure. 
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Staggered-grid approach 

In staggered-grid approach, the variables such as 

velocity and pressure are defined not only at grid points, 

but also at half-grid points (Virieux, 1984, 1986; Graves, 

1996, Behera, 2022). Hence, the velocity and pressure 

components are set to different spatial positions as 

shown in Figure 2.  For example, the grids of velocity 

components 𝑉𝑥 and 𝑉𝑧 wavefields are positioned in 

between the 𝑃 grid. This method has advantages of 

improved accuracy and stability in seismic wave 

simulations. Staggering the velocity and pressure fields 

eliminate the pressure oscillations as compared to 

nonstaggered-grid approach, resulting in greater 

stability and computational efficiency of wave field 

simulations. Staggered-grids have low numerical 

dispersion of waves as compared to nonstaggered-

grids. However, the staggered-grids demand more 

complex interpolation and boundary-conditions. It can 

be more difficult to build a staggered-grid than a 

nonstaggered one, especially in irregular domains. We 

have shown how the FD kernels are used to compute 

update for 𝑉𝑥 and 𝑉𝑧 along with the kernel to compute 

update of 𝑃 using staggered-grid implementation 

scheme (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The staggered-grid representation of the compute kernels showing grid-points (open and filled circles) needed to update 

the (a) 𝑉𝑥 and 𝑉𝑧, and (b) pressure (P) wavefields. The wavefields all have unique grid position. This indicates that the grids of 𝑉𝑥 and 

𝑉𝑧 wavefields are located in between the 𝑃 grid. 

The corresponding first-order derivatives in the spatial 

coordinates (lateral position 𝑥 and depth position 𝑧) of 

equation (2) are approximated by the centralized fourth-

order Crank-Nicolson approximation as (Thorbecke, 

2017):  

𝜕𝑃

𝜕𝑥
≈  

−𝑃((𝑖+
3

2
)∆𝑥)+27𝑃((𝑖+

1

2
)∆𝑥)−27𝑃((𝑖−

1

2
)∆𝑥)+𝑃((𝑖−

3

2
)∆𝑥)

24∆𝑥
     (6) 

𝜕𝑃

𝜕𝑧
≈  

−𝑃((𝑘+
3

2
)∆𝑧)+27𝑃((𝑘+

1

2
)∆𝑧)−27𝑃((𝑘−

1

2
)∆𝑧)+𝑃((𝑘−

3

2
)∆𝑧)

24∆𝑧
   (7) 

The first-order derivative in time is approximated by a 

second-order scheme as: 

    
𝜕𝑃

𝜕𝑡
≈  

−𝑃((𝑖+
1

2
)∆𝑡)−𝑃((𝑖−

1

2
)∆𝑡)

∆𝑡
    (8) 

These approximations can be derived from linear 

combination of different Taylor-series expansions 

(Fornberg, 1988). These above equations are being 

implemented in the finite-difference code using a 

staggered-grid scheme, which follow the grid layout as 

described by Virieux (1986).  The implementation of 

equation (2) is also called a stencil, since it forms a 

pattern of four grid point needed to compute the 

partial-derivative at one grid point (Figure 2b). To 
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compute the spatial derivative on all grid points, the 

stencil is shifted through the grid (Figure 2a).  

The model parameters used in the finite-difference 

program are  

     (𝜆 + 2 𝜇) =  𝑉𝑝
2𝜌 =  

1

𝜅
          (9)    

where 𝜌 is the density of the medium, 𝑉𝑝 is the P-wave 

(compressional) velocity, 𝜆 and 𝜇 are the Lame 

parameters and 𝜅 is the compressibility. The program 

reads the P-wave velocity and density of the medium as 

gridded input model files. From these files, the program 

computes the Lame parameters used in the first-order 

equations (Equation 1) to compute the wavefield at next 

time-steps (Thorbecke, 2017). 

To obtain the second-order partial-derivatives in space 

and time, the central-difference operator of the form 

(Bartolo et al., 2012) 

                    
𝑑𝑔𝑖,𝑘

𝑛

𝑑𝑥
=

𝑔
𝑖+

1
2,𝑘 

𝑛 −  𝑔
𝑖−

1
2,𝑘

𝑛

ℎ
                                     (10)                              

is applied to approximate the derivatives in equations 

(1) and (2) at the correct positions shown in Figure 2, 

where 𝑔 is the field of propagation (or its components) 

in the medium (𝑃, 𝑉𝑥 or 𝑉𝑧) along 𝑥 and 𝑧 directions. The 

second-order standard staggered-grid acoustic 

wavefields of the medium can be expressed as (Bartolo 

et al., 2012):  

𝑉𝑥
𝑖+

1

2
,𝑘

𝑛+
1

2 =  𝑉𝑥
𝑖+

1

2
,𝑘

𝑛−
1

2 − 𝑏
𝑖+

1

2
,𝑘

(
𝛥𝑡

ℎ
) (𝑃𝑖+1,𝑘

𝑛 − 𝑃𝑖,𝑘
𝑛 )                                                                                                  (11) 

𝑉𝑧
𝑖,𝑘+

1

2

𝑛+
1

2 = 𝑉𝑧
𝑖,𝑘+

1

2

𝑛−
1

2 − 𝑏
𝑖,𝑘+

1

2

(
𝛥𝑡

ℎ
) (𝑃𝑖,𝑘+1

𝑛 − 𝑃𝑖,𝑘
𝑛 )                                                                                                   (12) 

𝑃𝑖,𝑘
𝑛+1 = 𝑃𝑖,𝑘

𝑛 − 𝜅𝑖,𝑘 (
𝛥𝑡

ℎ
) {(𝑉𝑥

𝑖+
1

2
,𝑘

𝑛+
1

2 − 𝑉𝑥
𝑖−

1

2
,𝑘

𝑛+
1

2 ) + (𝑉𝑧
𝑖,𝑘+

1

2

𝑛+
1

2 − 𝑉𝑧
𝑖,𝑘−

1

2

𝑛+
1

2 )} + 𝐹(𝑥, 𝑧, 𝑡)                                                 (13) 

 

where 𝑉𝑥 and 𝑉𝑧 are the particle velocities in each 

direction (𝑥 and 𝑧) and 𝑏 is the buoyancy (inverse of 

density 1 𝜌⁄ ) at the staggered-grid positions, ∆𝑡 is the 

traveltime interval and ℎ (i.e., ∆𝑥 = ∆𝑧) is the grid 

spacing in both 𝑥 and 𝑧 directions, 𝑛 is the integer 

indices of the number of time-steps and 𝐹(𝑥, 𝑧, 𝑡) is the 

source wavefield. 

Stability conditions 

The equations (6) to (8) use finite-difference operators 

to approximate the first-order differential equations. 

When explicit time-marching strategies are utilized in 

numerical solutions, the Courant (Courant et al., 1967) 

number provides a convergence criterion. The Courant 

number is a dimensionless quantity used in FD 

modelling to ensure the stability and accuracy of the 

solution. It represents the ratio of the time-step size to 

the spatial grid spacing relative to the wave speed within 

the system. The Courant number limits the time-step in 

explicit time-marching computer simulations. To 

simulate a wave spanning a discrete grid distance (Δ𝑥 or 

Δ𝑧), the time-step must be smaller than the time it takes 

to reach an adjacent grid point. Otherwise, the  

 

simulation will yield inaccurate results. As grid point 

separation reduces, the upper time-step limit of the 

wavefield simulation also diminished. For the fourth-

order spatial derivatives, the Courant number is 0.606 

(Sei, 1995) so that the discretization becomes stable. The 

stability criteria of the fourth-order approximation 

proposed by Levander (1988) can be expressed as: 

                    ∆𝑡 < 0.606 (
∆𝑥 (=Δ𝑧)

𝑉𝑝,𝑚𝑎𝑥 
)                                (14)                                    

Equation (14) is obtained from the general stability 

criteria for a 2D regular staggered-grid (Δ𝑥 = Δ𝑧) explicit 

finite-difference scheme of Behera (2022) as:  

                    ∆𝑡 <
1

√2
(

∆𝑥(=Δ𝑧

𝑉𝑝,𝑚𝑎𝑥
)

1

∑ |𝑎𝑚|𝑀
𝑚=1

                           (15)                                    

where 𝑀 is the half of the differential operator length 

and 𝑎𝑚 is the finite-difference coefficients of 9/8 and 

1/24, respectively (Levander, 1988). To attenuate the 

energy generated due to artificial reflections from the 

side and bottom of the model, a suitable perfectly-

matched-layer (PML) absorbing-boundary-conditions 

need to be imposed in the modelling algorithm. The 

schematic sketch (Figure 3) show how the damping 
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parameters (D) are set within the model grids for 

successful implementation of the PML absorbing-

boundary-condition (Collino and Tsogka, 2001). Also, 

free-surface boundary-condition for the top and PML 

absorbing-boundary-condition for the other three sides 

of the model are necessary for efficient wave 

propagation and generation of full-wave synthetic 

seismic data (Behera, 2022). We have demonstrated the 

application of different types of boundary-conditions for 

the selected models in this study for wavefield 

simulation and corresponding effect on FD modelling 

and synthetic seismic data generation.  

 

Figure 3: The damping functions (𝐷) in four-sides and four 

corners of PML. 𝐷𝑥 has non-zero values at the left and right 

absorbing layers while 𝐷𝑧 has non-zero values at the top and 

bottom absorbing layers. The non-zero value increases with the 

increase of distance from the inner boundaries of the absorbing 

layers, which are indicated by the dashed lines. 

FULL-WAVE SYNTHETIC SEISMIC DATA 

We have employed the acoustic finite-difference 

modelling using staggered-grid approach for wavefield 

simulation and generation of full-wave synthetic seismic 

data for (a) a very simple flat-horizontal two-layer 

model, (b) a moderately complex geological model 

consisting a series of alternate synclines and anticlines 

called syncline and anticline model, and (c) a complex 

geological model with combination of the above two 

features along with a graben and flat-horizontal layer 

below them called a complex graben model.  The 

acoustic full-wave synthetic seismic data generated for 

these three models are used for seismic imaging in this 

study. 

(a) Flat-horizontal model 

The simplest model used for implementation of the 

acoustic FD modelling using the staggered-grid scheme 

with application of different boundary-conditions is the 

flat-horizontal two-layer model (Figure 4). The model is 

considered as homogeneous and isotropic having single 

interface at 1.0 km depth (Figure 4). All the model 

parameters used for wavefield simulation and 

computation of full-wave synthetic seismic data are 

presented in Table-1. 

Wavefield simulation 

For the acoustic wave propagation and computation of 

full-wave synthetic seismic data through the isotropic 

media using staggered-grid FD modelling scheme 

(Figure 3), it is very important to understand the nature 

of wave propagation by wavefield simulation at different 

time-steps without application any boundary-condition 

and application of different boundary-conditions like 

free-surface boundary-condition, free-surface with 

absorbing-boundary-condition and free-surface with 

PML absorbing-boundary-condition for the flat-

horizontal model (Figure 5). We have presented the 

wavefield simulation for the shot location at 2 km of the 

flat-horizontal model (Figure 4).  

At the time-step of 0.5 s, the corresponding snapshots 

of the wave propagation show very simple without any 

distortion of the wavefield through the model using no 

boundary-condition (Figure 5a), free-surface boundary-

condition (Figure 5b), free-surface with absorbing-

boundary-condition (Figure 5c) and free-surface with 

PML absorbing-boundary-condition (Figure 5d). 

Similarly, at increasing time-steps of 1.0 s, the 

corresponding snapshots of wave propagation show the 

nature of wavefield using the above-mentioned 

boundary-conditions (Figure 5e-h) in which the free-

surface with PML absorbing-boundary-condition 

snapshot (Figure 5h) minimizes all the spurious arrivals, 

back-scattered noises, multiples and distortion of waves 

as compared to the snapshots of wave propagation 

using other three boundary-conditions (Figure 5e-g). At 

increasing time steps of 1.5 s, we can observe that there 

is more complexity of wavefield leading to spurious 

arrivals present in the snapshots of wave propagation 

with no boundary-condition (Figure 5i), free-surface 

boundary condition (Figure 5j), free-surface with absor- 
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Table-1: Acoustic finite-difference full-wave modelling parameters 

Figure 4: Isotropic flat-horizontal two-layer model having a single reflecting interface used for acoustic FD modelling and simulation 

using staggered-grid scheme (Figure 1) for computation of full-wave synthetic seismic data and imaging. The velocity of the two 

layers are 2000 m/s and 4000 m/s with constant density of 2.2 g/cm3 having maximum depth of the model is 2 km and maximum 

horizontal distance of the model is 4 km. The velocity variation of the model is shown in color scale. 

Model parameters Flat-horizontal layer 

model 

Syncline and anticline 

model 

Complex graben 

model 

Dimension (𝑥 and 𝑧) 4 km × 2 km 4 km × 2 km 3 km × 1.5 km 

Number of samples in 

𝑥 and 𝑧 (𝑛𝑥 and 𝑛𝑧) 

400 × 200 400 × 200 600 × 300 

Grid spacing in 𝑥 and 𝑧 

(𝑑𝑥 and 𝑑𝑧) 

10 m × 10 m 10 m × 10 m 5 m × 5 m 

Frequency of source 

wavelet (Ricker) in Hz 

20 20 20 

Sampling interval 𝑑𝑡 

(ms) 

2 2 4 

Record length (s) 2 2 1.5 

Number of time 

samples (𝑛𝑠) 

1000 1000 375 

Velocity 𝑉𝑃 (m/s) 2000, 4000 2000, 4000 1500, 2500, 3500, 2000, 

5500 

Density 𝜌 (g/cm3) 2.2 2.2 1.4, 2.2, 2.4, 2.1, 2.8 

Shot interval (m) 100 100 50 

Receiver interval (m) 20 20 20 

Total number of shots 31 31 47 

Number of receivers 

per shot 

201 201 151 

First shot location (m) 500 500 500 

Last shot location (m) 3500 3500 2800 
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bing-boundary-condition (Figure 5k) as compared to 

free-surface with PML absorbing-boundary-condition 

(Figure 5l). The snapshot having free-surface with PML 

absorbing-boundary-condition has clear down-going 

waves, reflected waves with very good absorption of all 

the spurious arrivals or noises and other numerical 

waves generated during FD modelling (Figure 5l). 

Similarly, at the final time-step of 2.0 s, the 

corresponding snapshot of the wave propagation 

should be free from any arrivals, and the wavefield 

should be distortionless. However, we could see some 

numerical phases and distortion of the wavefield in the 

snapshots with no boundary-condition (Figure 5m), 

free-surface boundary-condition (Figure 5n), free-

surface with absorbing-boundary-condition (Figure 5o) 

as compared to free-surface with PML absorbing-

boundary-condition (Figure 5p) for the wave 

propagation through the media. Hence, we can observe 

that, there is no leakage of waves as well as complete 

absorption of unwanted arrivals and numerical phases 

generated due to FD modelling using the staggered-

grid scheme in case of free-surface with PML absorbing-

boundary-condition snapshots (Figure 5d, h, l, p) of 

wavefield simulation through the very simple flat-

horizontal layer model (Figure 4). 

The full-wave synthetic seismic data generated after 

complete wavefield simulation using no boundary-

condition, free-surface boundary-condition, free-

surface with absorbing-boundary-condition and free-

surface with PML absorbing-boundary-condition are 

shown in Figure 6.  We can observe the presence of 

different arrivals for a simple two-layer model having a 

single reflector at 1.0 km depth (Figure 4) for the 

example shot location at 2.0 km distance for which the 

wavefield simulation has been presented (Figure 5). The 

synthetic seismic data obtained without application of 

any boundary-condition for the simple flat-horizontal 

model having one reflecting interface (Figure 4) show 

various arrivals like back-scattered noises, multiples, and 

other spurious waves superimposed on the data having 

direct arrivals and reflection phase (Figure 6a).  

Figure 5: The snapshots of the wavefield simulation presented for the flat-horizontal model (Figure 4) at different time-steps by 

employing (a) no boundary-condition, (b) free-surface boundary-condition, (c) free-surface with absorbing-boundary-condition, (d) 

free-surface with perfectly-matched-layer (PML) absorbing-boundary-condition for the wave propagation at 0.5 s through the model. 

Similarly, the corresponding wave propagations at 1.0 s with the above-mentioned boundary conditions are shown in panels (e) to 

(h), at 1.5 s in panels (i) to (l), at 2.0 s in panels (m) to (p), respectively for the flat-horizontal two-layer media. 
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Figure 6: The acoustic full-wave synthetic seismic data computed at 2.0 km of the flat-horizontal model (Figure 4) using the 

staggered-grid FD modelling scheme by employing (a) no boundary-condition, (b) free-surface boundary-condition, (c) free-surface 

with absorbing-boundary-condition, and (d) free-surface with PML absorbing-boundary-condition, respectively to show the data 

quality and presence of different arrivals for this very simple model having single reflecting interface. 

However, the effect of these spurious arrivals and noises 

present in the data diminishes with application of free-

surface boundary-condition (Figure 6b), free-surface 

with absorbing-boundary-condition (Figure 6c) and 

free-surface with PML absorbing-boundary-condition 

(Figure 6d). The data quality is very good without any 

spurious arrivals or noises in case of free-surface with 

PML absorbing-boundary-conditions applied to the FD 

modelling (Figure 6d). This indicates that the application 

of acoustic FD full-wave modelling using staggered-grid 

scheme by employing free-surface with PML absorbing-

boundary-condition can generate full-wave synthetic 

seismic data free from unwanted arrivals or noises 

(Figure 6d), which generally obscure the data by using 

other boundary-conditions (Figure 6a-c). Hence, this is a 

direct test of the efficacy of this method for a simple 

benchmark flat-horizontal model having single 

reflecting interface (Figure 4). 

(b) Syncline and anticline model 

The application of staggered-grid FD full-wave 

modelling by employing different boundary-conditions 

has been tested for a more complex and geologically 

plausible syncline and anticline model (Figure 7), which 

is considered as one of the favourable target zones for 

hydrocarbon exploration. The model is considered as 

homogeneous and isotropic having single interface as 

alternate syncline and anticline starting at 1.0 km depth 

(Figure 7). The detail model parameters of the syncline 

and anticline model used for acoustic FD modelling are 

presented in Table-1. 

Wavefield simulation 

The corresponding wavefield simulation through the 

alternate syncline and anticline model (Figure 7) by 

employing the acoustic staggered-grid FD modelling is 

shown in Figure 8. The wavefield simulation at the same 

shot location of 2.0 km distance for this alternate 

syncline and anticline model (Figure 8) is presented. At 

the time-step of 0.5 s, the corresponding snapshots of 

the wave propagation through the model show very 

simple semi-circular wave-front without any distortions 

using no boundary-condition (Figure 8a), free-surface 

boundary-condition (Figure 8b), free-surface with 

absorbing-boundary-condition (Figure 8c) and free-
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surface with PML absorbing-boundary-condition (Figure 

8d) because the wave propagation is acoustic and 

confined within the first-layer, which is isotropic and 

homogeneous. 

Figure 7: The isotropic syncline and anticline model having a single reflecting interface used for computation of full-wave synthetic 

seismic data and imaging using the same FD modelling scheme (Figure 1). The velocity of the two layers are 2000 m/s and 4000 m/s 

with constant density of 2.2 g/cm3 having maximum depth of the model is 2 km and maximum horizontal distance of the model is 4 

km. The velocity variation of the model is shown in color scale. 

Figure 8: The corresponding snapshots are shown for the syncline and anticline model (Figure 7) at different time-steps of the 

wavefield simulation by employing the same (a) no boundary-condition, (b) free-surface boundary-condition, (c) free-surface with 

absorbing-boundary-condition, and (d) free-surface with perfectly-matched-layer (PML) absorbing-boundary-condition for the wave 

propagation at 0.5 s through the model. Similarly, the snapshots of the wave propagations at 1.0 s with the above-mentioned 

boundary-conditions are shown in panels (e) to (h), at 1.5 s in panels (i) to (l), at 2.0 s in panels (m) to (p), respectively for this two-

layer model. 
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However, at time-step of 1.0 s, the corresponding 

snapshots of wave propagation show very complex 

nature of wavefield overlapped with different type of 

noises and spurious arrivals, which are superimposed on 

the reflections from the interface of the syncline and 

anticline model (Figure 7) with application of all the 

above-mentioned boundary-conditions (Figure 8e-h). It 

is clearly observed that, the snapshot of the wavefield 

using free-surface with PML absorbing-boundary-

condition (Figure 8h) minimizes all the spurious arrivals, 

back-scattered noises, multiples and other distortions of 

waves as compared to the corresponding snapshots of 

wave propagation using other three boundary-

conditions (Figure 8e-g). At increasing time steps of 1.5 

s, we can see that there is more complexity of wavefield 

leading to spurious arrivals present in the snapshots of 

wave propagation having application of no boundary-

condition (Figure 8i), free-surface boundary-condition 

(Figure 8j), free-surface with absorbing-boundary-

condition (Figure 8k) as compared to free-surface with 

PML absorbing-boundary-condition (Figure 8l). The 

wavefield snapshot generated at 1.5 s show very clear 

down-going waves and reflected waves with complete 

absorption of unwanted waves or noises using free-

surface with PML absorbing-boundary-condition (Figure 

8l) for the acoustic staggered-grid FD modelling. 

Similarly, at the final time-step of 2.0 s, the 

corresponding snapshot of the wave propagation 

should be free from any arrivals, which should be blank 

similar to the flat-horizontal model. However, we could 

see some numerical phases and distortion of the 

wavefield in the snapshots with application of no 

boundary-condition (Figure 8m), free-surface boundary 

condition (Figure 8n), free-surface with absorbing-

boundary-condition (Figure 8o) as compared to free-

surface with PML absorbing-boundary-condition (Figure 

8p) for the wave propagation through the media. This 

clearly demonstrates that in spite of increasing 

complexity of the model, there is no leakage of waves as 

well as complete absorption of unwanted arrivals and 

numerical phases generated due to FD modelling using 

the staggered-grid scheme in the case of free-surface 

with PML absorbing-boundary-condition (Figure 8d, h, l, 

p) snapshots of the wave propagation through the 

complex syncline and anticline model. 

Figure 9: The acoustic full-wave synthetic seismic data computed for the shot at 2.0 km of the syncline and anticline model (Figure 

7) using the staggered-grid FD modelling scheme (Figure 1) by employing (a) no boundary-condition, (b) free-surface boundary-

condition, (c) free-surface with absorbing-boundary-condition, and (d) free-surface with PML absorbing-boundary-condition, 

respectively. The synthetic seismic data show nature of different arrivals for the simple syncline and anticline model having single 

reflecting interface. 
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The full-wave synthetic seismic data generated after 

complete wavefield simulation at the same shot location 

of 2.0 km using no boundary-condition, free-surface 

boundary-condition, free-surface with absorbing-

boundary-condition and free-surface with PML 

absorbing-boundary-condition are shown in Figures 9a 

to d). We can observe the presence of different arrivals 

in the synthetic seismic data obtained for the complex 

two-layer syncline and anticline model having a single 

reflector starts at 1.0 km depth (Figure 7). The synthetic 

seismic data obtained without application of any 

boundary-condition for this model having one reflecting 

interface (Figure 7) show various arrivals like back-

scattered noises, multiples, and other numerical phases 

along with the direct arrivals and reflection phase (Figure 

9a).  

However, the effect of these spurious arrivals, multiples 

and noises present in the data diminishes with 

application of free-surface boundary-condition (Figure 

9b), free-surface with absorbing-boundary-condition 

(Figure 9c) and free-surface with PML absorbing-

boundary-condition (Figure 9d). The quality of synthetic 

seismic data generated by employing free-surface with 

PML absorbing-boundary-condition (Figure 9d) is 

considered as the best representing the data 

corresponding to the true nature of syncline and 

anticline model without any unwanted spurious arrivals 

or noises as compared to other three data sets (Figure 

9a-c). Hence, the acoustic FD full-wave modelling using 

staggered-grid scheme and employing the free-surface 

with PML absorbing-boundary-condition can generate 

good quality full-wave synthetic seismic data (Figure 9d) 

required for seismic imaging as compared to the data 

obtained with application of other boundary-conditions 

(Figure 9a-c). 

 

Figure 10: (a) A five-layer acoustic, isotropic 

and laterally-homogeneous complex graben 

model having four different reflecting 

interfaces is used for computation of full-wave 

synthetic seismic data and imaging with the 

help of same FD modelling scheme (Figure 1). 

The corresponding velocities of the five-layers 

are 1500 m/s, 2500 m/s, 3500 m/s, 2000 m/s, 

and 5500 m/s with (b) variable densities of 1.4 

g/cm3, 2.2 g/cm3, 2.4 g/cm3, 2.1 g/cm3, and 2.8 

g/cm3, respectively for the five-layers from top 

to bottom having maximum depth of the 

model is 1.5 km and maximum horizontal 

distance of the model is 3 km. The velocity 

variation of the model is shown in color scale. 
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(c) Complex graben model 

To show the efficacy of the staggered-grid FD full-wave 

modelling by using different boundary-conditions, we 

have also employed this method for a complex graben 

model (Figure 10) with corresponding model 

parameters defined in Table-1. We have simulated the 

model with 5 m grid-size for both 𝑥- and 𝑧-directions 

having receiver interval of 20 m and source interval of 

50 m for the wave propagation through the model using 

the 20 Hz Ricker wavelet for the source. The full-wave 

synthetic seismic data is generated for the complex 

graben model by employing acoustic staggered-grid FD 

wavefield simulation with SI of 4 ms and corresponding 

record length of 1.5 s. The detail model parameters are 

presented in Table-1 used for acoustic FD modelling and 

computation of full-wave synthetic seismic data.   

Wavefield simulation 

We have employed the acoustic staggered-grid FD 

modelling for wavefield simulation and computation of 

full-wave synthetic seismic data for the complex graben 

model (Figure 10). As mentioned above for the two 

different models (Figures 4 and 7), we have also used the 

different type of boundary-conditions for this model 

(Figure10) to understand the nature of wave 

propagation at different time-steps through the media 

and generation of full-wave synthetic seismic data. We 

have shown the wavefield simulation for the shot 

located at 1.5 km distance, which is the centre of this 

complex graben model (Figure 10) similar to the above 

two models.  At the time-step of 0.5 s, the corresponding 

snapshot of the wave propagation through the model 

show very complex wave-front with different type of 

waves generated using no boundary-condition (Figure 

11a), free-surface boundary-condition (Figure 11b), 

free-surface with absorbing-boundary-condition (Figure 

11c) and free-surface with PML absorbing-boundary-

condition (Figure 11d) because the wave propagation is 

through the vertically heterogeneous media. But we can 

observe that, there is comparatively very less distortions 

or noises of wave propagation in the snapshot for the 

free-surface with PML absorbing-boundary-condition 

(Figure 11d) as compared to no boundary-condition 

(Figure 11a) and other two boundary-conditions (Figure 

11b, c). However, at time-step of 0.75 s, the 

corresponding snapshots of wave propagation show 

very complex nature of wavefield having different noises 

and spurious arrivals superimposed on the reflections 

from the different interfaces of the complex graben 

model (Figure 10) with application of all the above-

mentioned boundary-conditions (Figure 11e-h). It is 

clearly observed that, the snapshot of the wavefield 

using free-surface with PML absorbing-boundary-

condition (Figure 11h) minimizes all the spurious 

arrivals, back-scattered noises, multiples and other 

distortion of waves as compared to the corresponding 

snapshots of wave propagation using other three 

boundary-conditions (Figure 11e-g). At increasing time 

steps of 1.0 s, we can see that there is more complexity 

of wavefield leading to spurious arrivals present in the 

snapshots of wave propagation having application of no 

boundary-condition (Figure 11i), free-surface boundary-

condition (Figure 11j), free-surface with absorbing-

boundary-condition (Figure 11k) as compared to free-

surface with PML absorbing-boundary-condition (Figure 

11l).  

The snapshot generated at 1.0 s show very clear down-

going waves and reflected waves with complete 

absorption of unwanted waves or noises using free-

surface with PML absorbing-boundary-condition (Figure 

11l) for the acoustic staggered-grid FD modelling. 

Similarly, at the final time-step of 1.25 s, the 

corresponding snapshot of the wave propagation has 

limited arrivals similar to the other two models as 

mentioned above at time-step of 2.0 s (Figures 5 and 8). 

However, we could observe the presence of some 

numerical phases and distortions of the wavefield in the 

snapshots with application of no boundary-condition 

(Figure 11m), free-surface boundary condition (Figure 

11n), free-surface with absorbing-boundary-condition 

(Figure 11o) as compared to free-surface with PML 

absorbing-boundary-condition (Figure 11p) for the 

wave propagation through the media. Hence, with 

increasing complexity of the model, we also observe that 

there is no leakage of waves as well as complete 

absorption of unwanted arrivals and numerical phases 

generated due to FD modelling using the staggered-

grid scheme in the case of free-surface with PML 

absorbing-boundary-condition (Figure 11d, h, l, p) 

snapshots of the wave propagation through the 

complex graben model (Figure 10) indicating the 

efficacy of the method.
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Figure 11: The snapshots of corresponding wavefield simulation are shown for the complex graben model (Figure 10) at different 

time-steps by employing the same (a) no boundary-condition, (b) free-surface boundary-condition, (c) free-surface with absorbing-

boundary-condition, and (d) free-surface with perfectly-matched-layer (PML) absorbing-boundary-condition for the wave 

propagation at 0.5 s through the model. Similarly, the snapshots of the wave propagations at 0.75 s with the above-mentioned 

boundary conditions are shown in panels (e) to (h), at 1.0 s in panels (i) to (l), at 1.25 s in panels (m) to (p), respectively for this five-

layer model. 

The full-wave synthetic seismic data generated after 

complete wavefield simulation through the complex 

graben model (Figure 10) using no boundary-condition, 

free-surface boundary-condition, free-surface with 

absorbing-boundary-condition and free-surface with 

PML absorbing-boundary-condition are shown in 

(Figure 12a-d). There are several different types of 

arrivals with direct arrivals, reflections from each layer, 

back-scattered noises, multiples, diffractions, and 

several different noises are present in the computed full-

wave synthetic seismic data obtained for the complex 

graben model having five-layers (Figure 10). The 

synthetic seismic data obtained without application of 

any boundary-condition for this model having four 

different reflecting interfaces (Figure 10) show various 

arrivals like back-scattered noises, multiples, and other 

numerical phases along with the direct arrivals and 

reflection phases (Figure 12a). However, the effect of 

these spurious arrivals, multiples and noises present in 

the data diminishes with application of free-surface 

boundary-condition (Figure12b), free-surface with 

absorbing-boundary-condition (Figure 12c) and free-

surface with PML absorbing-boundary-condition (Figure 

12d). The quality of synthetic seismic data generated by 

employing free-surface with PML absorbing-boundary-

condition (Figure 12d) is considerably much better 

without any unwanted arrivals or spurious noises as 

compared to other three data sets (Figure 12a-c). Hence, 

the acoustic FD full-wave modelling using staggered-

grid scheme and employing the free-surface with PML 

absorbing-boundary-condition can generate high 

quality full-wave synthetic seismic data (Figure 12d), 

which are generally required for optimal seismic 

imaging as compared to the data obtained with 

application of other boundary-conditions (Figure 12a-c). 

SEISMIC IMAGING 

Seismic imaging using different migration techniques 

play pivotal role for delineating the subsurface 

geological structures. It accurately images the reflected  
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Figure 12: The acoustic full-wave synthetic seismic data computed for the shot at 1.5 km of the complex graben model (Figure 10) 

using the staggered-grid FD modelling scheme (Figure 1) by employing (a) no boundary-condition, (b) free-surface boundary-

condition, (c) free-surface with absorbing-boundary-condition, and (d) free-surface with PML absorbing-boundary-condition, 

respectively. The synthetic seismic data show nature of different arrivals for the complex graben model having four different reflecting 

interfaces. 

and diffracted energy to provide accurate structures of 

the geological targets of interest, which are very 

important for hydrocarbon exploration to find potential 

oil and gas bearing zones within the earth. Migration of 

seismic data is considered as the most compute 

intensive and cumbersome process in seismic data 

processing sequence. Seismic migration is a wave 

equation-based technique, which mainly attempts to 

attenuate all the distortions from the reflection seismic 

data by moving the events or reflections to their true 

spatial subsurface locations. Migration technique mainly 

tries to shorten, steepen and moves the dipping events 

to their true subsurface position by collapsing the 

diffractions or Fresnel zones observed in the seismic 

sections resulting accurate subsurface image having 

greater spatial resolution (Yilmaz, 1987). Migration is 

also called an inverse process in which the recorded 

events are back-propagated to their corresponding 

reflection positions.  

There are several ways to migrate the seismic data. The 

numerical techniques employed can generally be 

classified into three broad categories, namely: 

summation or integral methods such as Kirchhoff 

migration (Schneider, 1978), finite-difference methods 

(Claerbout, 1976, 1985), and transformation methods 

such as f-k migration (Stolt, 1978; Gazdag, 1978; Gazdag 

and Sguazzero, 1984). All these migration methods 

make use of some approximations to the scalar wave 

equation. The choice of the migration method to a 

particular data set mainly depends upon the complexity 

of the velocity model. Some migrations like f-k 

migration are computationally fast but can handle only 

the velocity variations with depth. Other migration 

methods like Kirchhoff, finite-difference, phase shift plus 

interpolation (PSPI) method can able to handle both 

lateral and vertical velocity variations with complex 

geological structures, but require large computational 

resources in terms of speed, memory and I/O. Migration 

can be performed in either time or depth (Yilmaz, 1987). 

In the presence of strong lateral velocity variations, time 

migration followed by time to depth conversion poorly 

image the reflected energy to its true subsurface 

position. Hence, the depth migration is preferred for this 

case. Depth migration generally compensates for ray 
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bending, lateral velocity pull-ups and the subsurface 

structure. The main advantage of depth migration is that 

the output image is obtained in depth domain and 

hence, this can be directly used for geological 

interpretation without any conversion of seismic 

sections from time domain to depth domain. 

For the imaging of full-wave synthetic seismic data 

generated, we have employed the 2-D wave-equation 

based finite-difference pre-stack depth migration 

(FDMIG) of different models (Figures 4, 7 and 10) used 

in our study. The FD pre-stack depth migration offers 

significant improvement over the Kirchhoff and f-k 

migrations for imaging the complex geological 

structures although computationally very expensive. We 

have used the synthetic seismic data generated using 

acoustic FD full-wave modelling by employing the free-

surface with PML absorbing-boundary-conditions 

corresponding to the three different models (Figures 4, 

7 and 10) for the FDMIG because of the data quality. The 

theory of application for the FDMIG can be briefly 

described based on the pioneering works of Claerbout 

(1985), Yilmaz (1987), and Li (1991). Assuming that 

seismic wave propagation in the earth follows the scalar 

acoustic wave equation: 

 
𝜕2𝑃

𝜕𝑥2 +
𝜕2𝑃

𝜕𝑦2 +
𝜕2𝑃

𝜕𝑧2 =
1

𝑉2(𝑥,𝑦,𝑧)

𝜕2𝑃

𝜕𝑡2 ,                  (16) 

where 𝑃(𝑥, 𝑦, 𝑧, 𝑡) is the pressure and 𝑉(𝑥, 𝑦, 𝑧) is the 

acoustic velocity of the media. The equation (16) is 

transformed to the Helmholz equation by assuming that 

the wave propagation occurs approximately along the 

𝑧-axis, then we can obtain the corresponding paraxial 

wave equation (Claerbout, 1985; Yilmaz, 1987; Li, 1991) 

as:      

    
𝜕𝑃

𝜕𝑧
= ±

𝑖𝜔

𝑉(𝑥,𝑦,𝑧)
√1 +

𝑉2(𝑥,𝑦,𝑧)

𝜔2 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) 𝑃     (17) 

where 𝜔 is the frequency of the propagating wave. The 

positive and negative signs of equation (17) correspond 

to upcoming and downgoing wavefields. In fact, the two 

waves propagate through the medium independently, 

but the one-way method focuses on the primary arrival, 

not on the result of any internal reflections within the 

model, so the upcoming waves are ignored, only the 

positive sign part of equation (17) is kept for FDMIG. 

Hence, we only use the downgoing waves in the 

wavefield continuation depth migration. The evaluation 

of the square-root operator is numerically difficult, 

hence it is approximated by a series that has its origin in 

a continued-fraction expansion (Claerbout, 1985; Yilmaz, 

1987). The continued-fraction expansion can be 

represented by ratios of polynomials (Ma, 1981) and the 

polynomial coefficients can be optimized for 

propagation angle (Lee and Suh, 1985). For 

computational efficiency and numerical speed, the 

continued-fraction expansion is split to separate the 

operators in the 𝑥 and 𝑦 directions. This produces an 

equation with the three terms, which can be solved 

individually using the method of fractional steps. The 

first-term is the thin-lens term and involves a solution of 

a complex exponential. The second and third terms are 

the diffraction terms for the 𝑥 and 𝑦 directions, which 

require efficient tridiagonal solutions across the solution 

domain. The approximation of the square-root operator, 

and the splitting step operator introduce errors into the 

migration. Two different filters have been provided in 

the paraxial equation (17) to correct for these 

approximations. The Graves and Clayton filter (Graves 

and Clayton, 1990) corrects for errors introduced by the 

operator splitting, and the Li filter (Li, 1991) attempts to 

correct for both approximations. Finally, we apply the 

absorbing-boundary-conditions similar to those 

described in Clayton and Engquist (1980) and Xu (1996). 

Thus, the overall procedure of solution is to read the 

data in a velocity plane, then compute the thin-lens and 

diffraction terms, correct for errors using one of the 

above filters, then apply an imaging condition to 

produce an image, and finally write this image to disk.  

This is repeated for each depth-step as we march down 

into the subsurface earth. The detail steps of the 

processing flow to obtain the final FDMIG image is 

shown in Figure 13. The results obtained by employing 

FDMIG to the full-wave synthetic seismic data obtained 

with free-surface and PML absorbing-boundary-

conditions for the flat-horizontal model (Figure 4), 

syncline and anticline model (Figure 7) and the complex 

graben model (Figure 10) are shown in Figure 14. We 

have used total thirty-one full-wave synthetic shot-

gathers generated (Table-1) using staggered-grid 

acoustic FD modelling by employing free-surface PML 

absorbing-boundary-condition (Figure 6) for imaging 

the flat-horizontal model (Figure 4) with the help of 

acoustic FDMIG (Figure 13). The image obtained show 
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Figure 13. The processing workflow for 2-D wave-equation based finite-difference pre-stack depth migration (FDMIG) used for 

imaging the acoustic full-wave synthetic seismic data computed by staggered-grid FD modelling and employing free-surface with 

PML absorbing-boundary-condition for three different models (Figures 4, 7, and 10). 

very clear reflecting horizon at 1.0 km depth (Figure 14a) 

without any distortions or noises, which generally occur 

at the edges of the model boundaries. The depth-step 

size used for the migration of synthetic seismic data for 

the flat-horizontal model (Figure 4) is 2 m for optimal 

seismic imaging. The depth-step size (Δ𝑧) is generally 

computed using the formula Δ𝑧 = 𝑉𝑚𝑖𝑛 4𝑓𝑚𝑎𝑥⁄  (Yilmaz, 

1987). For the flat-horizontal model, the minimum value 

of 𝑉𝑃 is 2.0 km/s and maximum frequency (𝑓𝑚𝑎𝑥) used is 

250 Hz (i.e. Nyquist frequency corresponds to half the 

sampling rate) for sampling rate of 2 ms corresponding 

to the data generated. Hence, the depth-step size 

computed is 2 m. For the FDMIG, the depth-step size is 

a very critical parameter that affects the quality of the 
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migrated image. A smaller depth-step size used in 

FDMIG can provide an accurate image with increasing 

cost of computational time, while a larger depth-step 

size can save computational resources and time but 

simultaneously may introduce several artifacts or under-

migration. The optimal depth-step size needs to trade-

off between the accuracy and computational efficiency. 

It should b  small enough to avoid significant artifacts 

and aliasing, but large enough to minimize the 

computational cost. Hence, the optimal depth-step size 

is generally chosen based on the specific characteristics 

of the data, the velocity model, and the desired image 

quality.   

Similarly, for the syncline and anticline model (Figure 7), 

we have applied the acoustic FDMIG processing flow 

(Figure 13) for the same thirty-one full-wave synthetic 

shot gathers generated (Table-1) using staggered-grid 

acoustic FD modelling by employing free-surface PML 

absorbing-boundary-condition (Figure 9). The depth-

step size of 2 m is obtained using minimum velocity 𝑉𝑃 

of 2.0 km/s and maximum frequency 𝑓𝑚𝑎𝑥 of 250 Hz for 

sampling rate of 2 ms. The corresponding FDMIG image 

for the syncline and anticline model (Figure 7) is shown 

in Figure 14b, which clearly delineate the syncline and 

anticline structure with correct positioning of the 

reflection events without any artifacts or noises due to 

the migration errors. Hence, the depth-step size chosen 

is optimal and minimized the artifacts generated during 

the migration with computational efficiency (Figure 

14b).  

The complex graben model (Figure 10) with application 

of acoustic FDMIG (Figure 13) for the forty-seven full-

wave synthetic shot gathers generated (Table-1) using 

staggered-grid acoustic FD modelling by employing 

free-surface PML absorbing-boundary-condition (Figure 

12) show very clear image of all the structures (Figure 

14c). The corresponding depth-step size of 3 m is 

obtained using minimum 𝑉𝑃 of 1.5 km/s and maximum 

frequency 𝑓𝑚𝑎𝑥 of 125 Hz for sampling rate of 4 ms. The 

FDMIG image obtained for the complex graben model 

(Figure 10) is shown in Figure 14c, which clearly depicts 

all the complex subsurface structures with proper 

positioning of the reflection events. There are very less 

artifacts, distortions or noises present in the seismic 

image, which are obvious due to the complexity of the 

model having four different reflecting interfaces with 

substantial velocity variations through the different 

layers. It is also important to note that the steeply 

dipping reflectors of the graben along with the flat-

horizontal reflector beneath this are well positioned in 

depth without much distortions and velocity pull-up, 

which generally occur if other migration techniques are 

used. The alternate syncline and anticline feature 

present above the graben structure are also very well 

resolved and positioned accurately in depth without any 

artifacts or distortions. The flat-horizontal reflector 

above the alternate syncline and anticline structure is 

also very well imaged with proper positioning in depth. 

Hence, all the structural features imaged are well 

focused and accurate with correct positioning in the 

depth (Figure 14c). This indicates that the depth-step 

size chosen is optimal and minimized the artifacts 

generated during the migration with computational 

efficiency for this complex graben model.     

CONCLUSIONS 

Simulation of seismic wavefield using acoustic 

staggered-grid finite-difference scheme plays a very 

important role for generation of full-wave synthetic 

seismic data. We have used this scheme for different 

models like flat-horizontal layer model, syncline and 

anticline model, and complex graben model for 

wavefield simulation and generation of full-wave 

synthetic seismic data. While performing wavefield 

simulation through these different models, we have also 

shown the wave propagation at different time-steps 

using no boundary-conditions, free-surface boundary-

conditions, free-surface with absorbing-boundary-

conditions, and free-surface with PML absorbing-

boundary-conditions to illustrate the nature of wave 

propagation from the snapshots taken for the three 

benchmark models with increasing complexity. We have 

also computed the acoustic full-wave synthetic seismic 

data for these three models using the different 

boundary-conditions, which implied that application of 

free-surface with PML absorbing-boundary-condition 

has superior data quality as compared to the other three 

types of boundary-condition. The synthetic seismic data 

using free-surface with PML absorbing-boundary-

condition are devoid of different types of noise and 

considerably better data quality without any unwanted 

arrivals or spurious noises as compared to other three 

data sets. Hence, the acoustic FD full-wave modelling 
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Figure 14. The corresponding FDMIG image 

obtained for (a) flat-horizontal model, (b) syncline 

and anticline model, and (c) complex graben 

model. The image shows accurate positioning of 

the different reflecting horizons without much 

distortions for all the three models and no velocity 

pull-ups below the steeply dipping reflectors for 

the complex graben model indicating the 

robustness and efficacy of the FDMIG for imaging 

the complex geological structures. 

 

using staggered-grid scheme and employing the free-

surface with PML absorbing-boundary-condition can 

generate high quality full-wave synthetic seismic data, 

which are required for optimal seismic imaging as 

compared to the other synthetic data obtained for these 

models having spurious arrivals and different type of 

noises predominant along with the required seismic 

reflection arrivals. For optimal seismic imaging using the 

full-wave synthetic seismic data computed using the 

free-surface with PML absorbing-boundary-condition 

for different models of this study, we have employed the 

robust and highly compute intensive and accurate 2-D 

wave-equation based FDMIG for seismic imaging. The 

corresponding FDMIG images show accurate 

positioning of the reflectors corresponding to different 

geological structures like flat-horizontal model, syncline 

and anticline model, and the complex graben model of 

this study having minimum artifacts and distortions 

without any velocity pull-up below the steeply dipping 

reflectors. This indicates that the migration algorithm 
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used in this study is numerically stable and efficient to 

suppress the noises generally occur due to migration 

errors leading to very good focusing and proper 

positioning of all the reflection events in their true 

subsurface position.   
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