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ABSTRACT

Seismic wave propagation through different subsurface
geological structures plays a pivotal role for accurate imaging
of the target zones of interest. There are several techniques
available for numerical simulation of seismic wave propagation
through different media. We have used acoustic finite-
difference full-wave modelling using staggered-grid approach
by employing both free-surface boundary-condition (at top)
and perfectly-matched-layer (PML) absorbing-boundary-
condition (at other three sides) for the model boundaries. This
method is very accurate and computationally efficient for
seismic wave propagation and considerably reduces the
spurious arrivals mainly occurring due to numerical dispersion,
back-scattered noises and multiples. The staggered-grid
approach increases spatial resolution and stability of the
wavefield simulation, which allow for the efficient propagation
of seismic waves in complex subsurface geological structures.
We validate the method by running benchmark tests for
different models and compared the corresponding results. The
results obtained indicate that the method employed is
successful in modelling and imaging of flat-horizonal layer and
complex geological structures like a gently dipping syncline
and anticline model as well as a complex graben model with
combination of the above two structures by minimizing the
artifacts. We have also reduced the effect of multiple
reflections, back-scattered noise, and other spurious arrivals
using two-way acoustic wave-equation with free-surface and
PML absorbing-boundary-condition constraints, resulting
high-quality synthetic seismic data. These synthetic seismic
data generated have been further used for efficient imaging
by employing the 2-D wave-equation based finite-difference
pre-stack depth migration (FDMIG).
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INTRODUCTION

Full-wave modelling using acoustic and elastic finite-
difference (FD) techniques play pivotal role for

subsurface imaging of complex geological structures
having steeply dipping target zones, whereas the other
methods generally encounter several different
problems. The ability to model and accurately simulate
seismic wavefield through the complex subsurface
geological structures are very important for detecting
target zones of interest for hydrocarbon or mineral
explorations. Hence, the compute-intensive and robust
numerical methods such as acoustic and elastic FD full-
wave modelling are very popular now-a-days and
increasingly used to address these challenges of
imaging complex geological structures amenable for
delineating potential zones of hydrocarbon and mineral.
The computation generally increases many folds when
the subsurface geological structures are heterogeneous
and anisotropic in which several numerical phases, back-
scattered noises and artifacts are generated (Behera and
Tsvankin, 2009; Behera, 2022). To handle these issues,
suitable perfectly-matched-layer (PML) absorbing-
boundary-conditions (ABC) and free-surface boundary-
conditions are being applied with the staggered-grid FD
scheme for both the wavefield simulation and
generation of synthetic seismic data. The synthetic
seismic data generated using this approach are
generally free from surface-waves, multiples and back-
scattered noises, which are highly dominant in the data
when other modelling techniques are used. The main
goal of this study is to demonstrate the application of
FD method using staggered-grid approach with the help
of PML absorbing-boundary-conditions for modelling
and simulate the wavefields for a very simple and
moderately complex geological models. This will help in
the computation of full-wave synthetic seismic data and
application of robust and highly compute intensive
seismic imaging technique like 2-D wave-equation
based finite-difference pre-stack depth migration
(FDMIG) for accurate imaging of these geological
structures of interest.
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METHODOLOGY
Finite-difference modelling

The acoustic finite-difference (FD) method is considered
as an efficient approach for wavefield simulation
through  complex geological  structures  and
computation of full-wave synthetic seismic data as
compared to other different numerical techniques due
to its low computational cost, easy implementation and
less computer memory requirements. This method is
particularly useful when analytical solutions to wave
equations are difficult or impossible to obtain especially
in complex models. This technique involves discretizing
the continuous partial-differential equations governing
the wave propagation through the model grid, where
the wavefield values are approximated at discrete points
in space and time. For wave propagation through a
media, the corresponding wave equation is generally
expressed as:

92u(x,t)
at?
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where u(x,t) is the wavefield (such as pressure or
displacement), C is the velocity of the waves and 2 is
the Laplacian operator representing the spatial second
derivatives. For computational efficiency, the numerical
simulations often rely on discretizing the governing
equation (Equation 1) using grid systems. These grids
can be classified into nonstaggered- and staggered-grid
schemes. The main difference between these two
approaches relies on how the variables (e.g., velocity and
pressure) are positioned on the grids. To understand the
finite-difference full-wave modelling procedure and
generation of synthetic seismic data, we have presented
a flow-chart (Figure 1) to illustrate the different steps
involved in modelling having FD kernels along with the
shot and time loop for the generation of source
wavefield and snapshots of the receiver wavefield
followed by storage of the synthetic seismic data. The
FD full-wave modelling generally employs two different
approaches  for  wavefield simulation  called
nonstaggered- and staggered-grid for arrangement of
the variables (i.e., pressure and velocities) on a numerical
mesh. The choice of these two approaches has direct
impact on the FD solver for stability, accuracy and ease
of implementation.
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Non-staggered-grid approach

A nonstaggered-grid also known as collocated or
central-grid (Bartolo et al,, 2012) generally stores all the
variables in the same grid point. This means that for a
2D problem, the velocity components V, and V, (for x
and z directions) as well as the pressure field P are
defined at the same grid point. Hence, the
computational grid is easier to set up, since all variables
are stored in the same location and direct interpolation
of all the variables is possible. Hence, the interpolation
of boundary conditions for the source term becomes
easier. On the other hand, the disadvantage of
nonstaggered-grid scheme is that they suffer from
numerical challenges due to the coupling of pressure
and velocity fields. Since, the pressure and velocities are
estimated at the same grid points, this can lead to
problems due to non-physical pressure oscillations
causing less numerical stability. Without staggering, the
errors in pressure and velocity fields spread very easily,
resulting computational instability. For an acoustic
medium, the wave equations are generally expressed by
the first-order linearized system of Newton's and
Hooke's law as (Thorbecke, 2017):
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where V, and V, are particle velocity components in x-
and z-direction respectively, P is the acoustic pressure,
p is the density of the medium and «is the
compressibility.

A basic (nonstaggered) finite-difference grid is used for
the acoustic wave equation producing a numerically
stable scheme in FD modelling. The nonstaggered-grid
scheme takes into account the pressure at discrete
locations that are equally spaced in time (At) and spatial
direction (h=Ax=Az). By employing the Taylor-series
expansions to obtain the known central-difference
operators, each derivative of the wave equation can be
roughly calculated. The wave equation for a 2D acoustic
media can be expressed as (Bartolo et al., 2012):
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The corresponding second-order approximations of the where P is the wave propagation in the x, z, t and

above wave equation (Equation 3) can be expressed as: F(x,z,t) is the corresponding source wavefield. The grid
o2p  BITi_2pleplL spacing in x and z direction is represented as Ax and Az
T a2 having traveltime interval of At with n as the number of
0%p Py —2PlaRl discrete time steps (i.e., t = nAt) and C as the velocity of
. a2 (4) the waves through the media. The source time function
0%p _ Pl —2PlRl, used is the Ricker wavelet. After simplification of
222 a2 equation (4), the final nonstaggered-grid pressure

wavefield for the acoustic media can be expressed as:
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Figure 1: Flow-chart showing staggered-grid finite-difference (FD) full-wave modelling algorithm having the kernel of the acoustic
scheme used for wavefield simulation and generation of synthetic seismic data. The two decision loops are for the number of shot
positions and the number of time-steps to be modelled. In the flow-chart, the time is represented by t, horizontal and vertical particle
velocity by V., and V,, respectively, and P is the acoustic pressure.
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Staggered-grid approach

In staggered-grid approach, the variables such as
velocity and pressure are defined not only at grid points,
but also at half-grid points (Virieux, 1984, 1986; Graves,
1996, Behera, 2022). Hence, the velocity and pressure
components are set to different spatial positions as
shown in Figure 2. For example, the grids of velocity
components V, and V, wavefields are positioned in
between the P grid. This method has advantages of
improved accuracy and stability in seismic wave
simulations. Staggering the velocity and pressure fields
eliminate the pressure oscillations as compared to

(@) (b)

nonstaggered-grid approach, resulting in greater
stability and computational efficiency of wave field
simulations. Staggered-grids have low numerical
dispersion of waves as compared to nonstaggered-
grids. However, the staggered-grids demand more
complex interpolation and boundary-conditions. It can
be more difficult to build a staggered-grid than a
nonstaggered one, especially in irregular domains. We
have shown how the FD kernels are used to compute
update for V, and V, along with the kernel to compute
update of P using staggered-grid implementation
scheme (Figure 2).
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Figure 2: The staggered-grid representation of the compute kernels showing grid-points (open and filled circles) needed to update
the (a) V, and V,, and (b) pressure (P) wavefields. The wavefields all have unique grid position. This indicates that the grids of V, and

V, wavefields are located in between the P grid.

The corresponding first-order derivatives in the spatial
coordinates (lateral position x and depth position z) of
equation (2) are approximated by the centralized fourth-
order Crank-Nicolson approximation as (Thorbecke,
2017):
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The first-order derivative in time is approximated by a
second-order scheme as:
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These approximations can be derived from linear
combination of different Taylor-series expansions
(Fornberg, 1988). These above equations are being
implemented in the finite-difference code using a
staggered-grid scheme, which follow the grid layout as
described by Virieux (1986). The implementation of
equation (2) is also called a stencil, since it forms a
pattern of four grid point needed to compute the
partial-derivative at one grid point (Figure 2b). To
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compute the spatial derivative on all grid points, the
stencil is shifted through the grid (Figure 2a).

The model parameters used in the finite-difference
program are

A+2p=Vip=+ )

where p is the density of the medium, V}, is the P-wave
(compressional) velocity, A and u are the Lame
parameters and k is the compressibility. The program
reads the P-wave velocity and density of the medium as
gridded input model files. From these files, the program
computes the Lame parameters used in the first-order
equations (Equation 1) to compute the wavefield at next
time-steps (Thorbecke, 2017).
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where V, and V, are the particle velocities in each
direction (x and z) and b is the buoyancy (inverse of
density 1/p) at the staggered-grid positions, At is the
traveltime interval and h (i.e, Ax =Az) is the grid
spacing in both x and z directions, n is the integer
indices of the number of time-steps and F(x, z,t) is the
source wavefield.

Stability conditions

The equations (6) to (8) use finite-difference operators
to approximate the first-order differential equations.
When explicit time-marching strategies are utilized in
numerical solutions, the Courant (Courant et al., 1967)
number provides a convergence criterion. The Courant
number is a dimensionless quantity used in FD
modelling to ensure the stability and accuracy of the
solution. It represents the ratio of the time-step size to
the spatial grid spacing relative to the wave speed within
the system. The Courant number limits the time-step in
explicit time-marching computer simulations. To
simulate a wave spanning a discrete grid distance (Ax or
Az), the time-step must be smaller than the time it takes
to reach an adjacent grid point. Otherwise, the
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To obtain the second-order partial-derivatives in space
and time, the central-difference operator of the form
(Bartolo et al., 2012)

agl _ g?+1,k_ g?—l,k

2 2 (1 0)

dx h

is applied to approximate the derivatives in equations
(1) and (2) at the correct positions shown in Figure 2,
where g is the field of propagation (or its components)
in the medium (P, V, or V,) along x and z directions. The
second-order  standard staggered-grid  acoustic
wavefields of the medium can be expressed as (Bartolo
et al.,, 2012):

(1

(12)

1
—nﬁa»+F@@o (13)
k=3

simulation will yield inaccurate results. As grid point
separation reduces, the upper time-step limit of the
wavefield simulation also diminished. For the fourth-
order spatial derivatives, the Courant number is 0.606
(Sei, 1995) so that the discretization becomes stable. The
stability criteria of the fourth-order approximation
proposed by Levander (1988) can be expressed as:

At < 0.606 (A" (=Az)) (14)

pmax
Equation (14) is obtained from the general stability
criteria for a 2D regular staggered-grid (Ax = Az) explicit
finite-difference scheme of Behera (2022) as:

At < i(Ax(:Az) 1 (1 5)

V2 Vp,max Z%=1|am|

where M is the half of the differential operator length
and a,, is the finite-difference coefficients of 9/8 and
1/24, respectively (Levander, 1988). To attenuate the
energy generated due to artificial reflections from the
side and bottom of the model, a suitable perfectly-
matched-layer (PML) absorbing-boundary-conditions
need to be imposed in the modelling algorithm. The
schematic sketch (Figure 3) show how the damping
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parameters (D) are set within the model grids for
successful implementation of the PML absorbing-
boundary-condition (Collino and Tsogka, 2001). Also,
free-surface boundary-condition for the top and PML
absorbing-boundary-condition for the other three sides
of the model are necessary for efficient wave
propagation and generation of full-wave synthetic
seismic data (Behera, 2022). We have demonstrated the
application of different types of boundary-conditions for
the selected models in this study for wavefield
simulation and corresponding effect on FD modelling
and synthetic seismic data generation.

Dxio é Dx:O é Dxio
D.#0 D.#0 . D, #0
R X &
Dc#0 r D=0
=y Zv Space area Lt
Dxio E DX_O E Dxio
D.#0 ! D, #0 D.#0

Figure 3: The damping functions (D) in four-sides and four
corners of PML. D, has non-zero values at the left and right
absorbing layers while D, has non-zero values at the top and
bottom absorbing layers. The non-zero value increases with the
increase of distance from the inner boundaries of the absorbing
layers, which are indicated by the dashed lines.

FULL-WAVE SYNTHETIC SEISMIC DATA

We have employed the acoustic finite-difference
modelling using staggered-grid approach for wavefield
simulation and generation of full-wave synthetic seismic
data for (a) a very simple flat-horizontal two-layer
model, (b) a moderately complex geological model
consisting a series of alternate synclines and anticlines
called syncline and anticline model, and (c) a complex
geological model with combination of the above two
features along with a graben and flat-horizontal layer
below them called a complex graben model. The
acoustic full-wave synthetic seismic data generated for
these three models are used for seismic imaging in this
study.

GEOHORIZONS, Vol. 30, No. 1, June 2025
© SPG India. All rights reserved.

(a) Flat-horizontal model

The simplest model used for implementation of the
acoustic FD modelling using the staggered-grid scheme
with application of different boundary-conditions is the
flat-horizontal two-layer model (Figure 4). The model is
considered as homogeneous and isotropic having single
interface at 1.0 km depth (Figure 4). All the model
parameters used for wavefield simulation and
computation of full-wave synthetic seismic data are
presented in Table-1.

Wavefield simulation

For the acoustic wave propagation and computation of
full-wave synthetic seismic data through the isotropic
media using staggered-grid FD modelling scheme
(Figure 3), it is very important to understand the nature
of wave propagation by wavefield simulation at different
time-steps without application any boundary-condition
and application of different boundary-conditions like
free-surface boundary-condition, free-surface with
absorbing-boundary-condition and free-surface with
PML absorbing-boundary-condition for the flat-
horizontal model (Figure 5). We have presented the
wavefield simulation for the shot location at 2 km of the
flat-horizontal model (Figure 4).

At the time-step of 0.5 s, the corresponding snapshots
of the wave propagation show very simple without any
distortion of the wavefield through the model using no
boundary-condition (Figure 5a), free-surface boundary-
condition (Figure 5b), free-surface with absorbing-
boundary-condition (Figure 5c) and free-surface with
PML absorbing-boundary-condition  (Figure  5d).
Similarly, at increasing time-steps of 1.0 s, the
corresponding snapshots of wave propagation show the
nature of wavefield using the above-mentioned
boundary-conditions (Figure 5e-h) in which the free-
surface with  PML absorbing-boundary-condition
snapshot (Figure 5h) minimizes all the spurious arrivals,
back-scattered noises, multiples and distortion of waves
as compared to the snapshots of wave propagation
using other three boundary-conditions (Figure 5e-g). At
increasing time steps of 1.5 s, we can observe that there
is more complexity of wavefield leading to spurious
arrivals present in the snapshots of wave propagation
with no boundary-condition (Figure 5i), free-surface
boundary condition (Figure 5j), free-surface with absor-
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Table-1: Acoustic finite-difference full-wave modelling parameters

Model parameters

Flat-horizontal layer

Syncline and anticline

Complex graben

model model model
Dimension (x and z) 4 km x 2 km 4 km x 2 km 3km x 1.5 km
Number of samples in 400 x 200 400 x 200 600 x 300
x and z (nx and nz)
Grid spacing in x and z 10m x 10 m 10m x 10 m 5mx5m
(dx and dz)
Frequency of source 20 20 20
wavelet (Ricker) in Hz
Sampling interval dt 2 2 4
(ms)
Record length (s) 2 2 1.5
Number of time 1000 1000 375
samples (ns)
Velocity Vp (m/s) 2000, 4000 2000, 4000 1500, 2500, 3500, 2000,
5500
Density p (g/cm?3) 2.2 2.2 14,22,24,21,2.8
Shot interval (m) 100 100 50
Receiver interval (m) 20 20 20
Total number of shots 31 31 47
Number of receivers 201 201 151
per shot
First shot location (m) 500 500 500
Last shot location (m) 3500 3500 2800
Distance (km)
000 1.0 20 3.0

Depth (km)

2.0

Velocity
(mfs)

4000

3500

3000

2500

2000

Figure 4: Isotropic flat-horizontal two-layer model having a single reflecting interface used for acoustic FD modelling and simulation
using staggered-grid scheme (Figure 1) for computation of full-wave synthetic seismic data and imaging. The velocity of the two
layers are 2000 m/s and 4000 m/s with constant density of 2.2 g/cm? having maximum depth of the model is 2 km and maximum
horizontal distance of the model is 4 km. The velocity variation of the model is shown in color scale.
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bing-boundary-condition (Figure 5k) as compared to
free-surface with PML absorbing-boundary-condition
(Figure 5I). The snapshot having free-surface with PML
absorbing-boundary-condition has clear down-going
waves, reflected waves with very good absorption of all
the spurious arrivals or noises and other numerical
waves generated during FD modelling (Figure 5I).
Similarly, at the final time-step of 2.0 s, the
corresponding snapshot of the wave propagation
should be free from any arrivals, and the wavefield
should be distortionless. However, we could see some
numerical phases and distortion of the wavefield in the
snapshots with no boundary-condition (Figure 5m),
free-surface boundary-condition (Figure 5n), free-
surface with absorbing-boundary-condition (Figure 50)
as compared to free-surface with PML absorbing-
boundary-condition (Figure 5p) for the wave
propagation through the media. Hence, we can observe
that, there is no leakage of waves as well as complete
absorption of unwanted arrivals and numerical phases
generated due to FD modelling using the staggered-
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grid scheme in case of free-surface with PML absorbing-
boundary-condition snapshots (Figure 5d, h, I, p) of
wavefield simulation through the very simple flat-
horizontal layer model (Figure 4).

The full-wave synthetic seismic data generated after
complete wavefield simulation using no boundary-
condition, free-surface boundary-condition, free-
surface with absorbing-boundary-condition and free-
surface with PML absorbing-boundary-condition are
shown in Figure 6. We can observe the presence of
different arrivals for a simple two-layer model having a
single reflector at 1.0 km depth (Figure 4) for the
example shot location at 2.0 km distance for which the
wavefield simulation has been presented (Figure 5). The
synthetic seismic data obtained without application of
any boundary-condition for the simple flat-horizontal
model having one reflecting interface (Figure 4) show
various arrivals like back-scattered noises, multiples, and
other spurious waves superimposed on the data having
direct arrivals and reflection phase (Figure 6a).
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Figure 5: The snapshots of the wavefield simulation presented for the flat-horizontal model (Figure 4) at different time-steps by
employing (a) no boundary-condition, (b) free-surface boundary-condition, (c) free-surface with absorbing-boundary-condition, (d)
free-surface with perfectly-matched-layer (PML) absorbing-boundary-condition for the wave propagation at 0.5 s through the model.
Similarly, the corresponding wave propagations at 1.0 s with the above-mentioned boundary conditions are shown in panels (e) to
(h), at 1.5 s in panels (i) to (1), at 2.0 s in panels (m) to (p), respectively for the flat-horizontal two-layer media.
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(a) Distance (km)
10 2.0 3.0

Distance (km)
20

(b) Distance (km)
20

Figure 6: The acoustic full-wave synthetic seismic data computed at 2.0 km of the flat-horizontal model (Figure 4) using the
staggered-grid FD modelling scheme by employing (a) no boundary-condition, (b) free-surface boundary-condition, (c) free-surface
with absorbing-boundary-condition, and (d) free-surface with PML absorbing-boundary-condition, respectively to show the data
quality and presence of different arrivals for this very simple model having single reflecting interface.

However, the effect of these spurious arrivals and noises
present in the data diminishes with application of free-
surface boundary-condition (Figure 6b), free-surface
with absorbing-boundary-condition (Figure 6c) and
free-surface with PML absorbing-boundary-condition
(Figure 6d). The data quality is very good without any
spurious arrivals or noises in case of free-surface with
PML absorbing-boundary-conditions applied to the FD
modelling (Figure 6d). This indicates that the application
of acoustic FD full-wave modelling using staggered-grid
scheme by employing free-surface with PML absorbing-
boundary-condition can generate full-wave synthetic
seismic data free from unwanted arrivals or noises
(Figure 6d), which generally obscure the data by using
other boundary-conditions (Figure 6a-c). Hence, this is a
direct test of the efficacy of this method for a simple
benchmark flat-horizontal model having single
reflecting interface (Figure 4).

(b) Syncline and anticline model

The application of staggered-grid FD full-wave
modelling by employing different boundary-conditions
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has been tested for a more complex and geologically
plausible syncline and anticline model (Figure 7), which
is considered as one of the favourable target zones for
hydrocarbon exploration. The model is considered as
homogeneous and isotropic having single interface as
alternate syncline and anticline starting at 1.0 km depth
(Figure 7). The detail model parameters of the syncline
and anticline model used for acoustic FD modelling are
presented in Table-1.

Wavefield simulation

The corresponding wavefield simulation through the
alternate syncline and anticline model (Figure 7) by
employing the acoustic staggered-grid FD modelling is
shown in Figure 8. The wavefield simulation at the same
shot location of 2.0 km distance for this alternate
syncline and anticline model (Figure 8) is presented. At
the time-step of 0.5 s, the corresponding snapshots of
the wave propagation through the model show very
simple semi-circular wave-front without any distortions
using no boundary-condition (Figure 8a), free-surface
boundary-condition (Figure 8b), free-surface with
absorbing-boundary-condition (Figure 8c) and free-
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surface with PML absorbing-boundary-condition (Figure confined within the first-layer, which is isotropic and
8d) because the wave propagation is acoustic and homogeneous.
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Figure 7: The isotropic syncline and anticline model having a single reflecting interface used for computation of full-wave synthetic
seismic data and imaging using the same FD modelling scheme (Figure 1). The velocity of the two layers are 2000 m/s and 4000 m/s
with constant density of 2.2 g/cm? having maximum depth of the model is 2 km and maximum horizontal distance of the model is 4
km. The velocity variation of the model is shown in color scale.
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Figure 8: The corresponding snapshots are shown for the syncline and anticline model (Figure 7) at different time-steps of the
wavefield simulation by employing the same (a) no boundary-condition, (b) free-surface boundary-condition, (c) free-surface with
absorbing-boundary-condition, and (d) free-surface with perfectly-matched-layer (PML) absorbing-boundary-condition for the wave
propagation at 0.5 s through the model. Similarly, the snapshots of the wave propagations at 1.0 s with the above-mentioned
boundary-conditions are shown in panels (e) to (h), at 1.5 s in panels (i) to (), at 2.0 s in panels (m) to (p), respectively for this two-
layer model.
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However, at time-step of 1.0 s, the corresponding
snapshots of wave propagation show very complex
nature of wavefield overlapped with different type of
noises and spurious arrivals, which are superimposed on
the reflections from the interface of the syncline and
anticline model (Figure 7) with application of all the
above-mentioned boundary-conditions (Figure 8e-h). It
is clearly observed that, the snapshot of the wavefield
using free-surface with PML absorbing-boundary-
condition (Figure 8h) minimizes all the spurious arrivals,
back-scattered noises, multiples and other distortions of
waves as compared to the corresponding snapshots of
wave propagation using other three boundary-
conditions (Figure 8e-g). At increasing time steps of 1.5
s, we can see that there is more complexity of wavefield
leading to spurious arrivals present in the snapshots of
wave propagation having application of no boundary-
condition (Figure 8i), free-surface boundary-condition
(Figure 8j), free-surface with absorbing-boundary-
condition (Figure 8k) as compared to free-surface with
PML absorbing-boundary-condition (Figure 8l). The
wavefield snapshot generated at 1.5 s show very clear
down-going waves and reflected waves with complete
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3.0

Distance (km)
20
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absorption of unwanted waves or noises using free-
surface with PML absorbing-boundary-condition (Figure
8l) for the acoustic staggered-grid FD modelling.
Similarly, at the final time-step of 2.0 s, the
corresponding snapshot of the wave propagation
should be free from any arrivals, which should be blank
similar to the flat-horizontal model. However, we could
see some numerical phases and distortion of the
wavefield in the snapshots with application of no
boundary-condition (Figure 8m), free-surface boundary
condition (Figure 8n), free-surface with absorbing-
boundary-condition (Figure 80) as compared to free-
surface with PML absorbing-boundary-condition (Figure
8p) for the wave propagation through the media. This
clearly demonstrates that in spite of increasing
complexity of the model, there is no leakage of waves as
well as complete absorption of unwanted arrivals and
numerical phases generated due to FD modelling using
the staggered-grid scheme in the case of free-surface
with PML absorbing-boundary-condition (Figure 8d, h, |,
p) snapshots of the wave propagation through the
complex syncline and anticline model.
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Figure 9: The acoustic full-wave synthetic seismic data computed for the shot at 2.0 km of the syncline and anticline model (Figure
7) using the staggered-grid FD modelling scheme (Figure 1) by employing (a) no boundary-condition, (b) free-surface boundary-
condition, (c) free-surface with absorbing-boundary-condition, and (d) free-surface with PML absorbing-boundary-condition,
respectively. The synthetic seismic data show nature of different arrivals for the simple syncline and anticline model having single

reflecting interface.
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The full-wave synthetic seismic data generated after
complete wavefield simulation at the same shot location
of 2.0 km using no boundary-condition, free-surface
boundary-condition, free-surface with absorbing-
boundary-condition and free-surface with PML
absorbing-boundary-condition are shown in Figures 9a
to d). We can observe the presence of different arrivals
in the synthetic seismic data obtained for the complex
two-layer syncline and anticline model having a single
reflector starts at 1.0 km depth (Figure 7). The synthetic
seismic data obtained without application of any
boundary-condition for this model having one reflecting
interface (Figure 7) show various arrivals like back-
scattered noises, multiples, and other numerical phases
along with the direct arrivals and reflection phase (Figure
9a).

However, the effect of these spurious arrivals, multiples
and noises present in the data diminishes with
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application of free-surface boundary-condition (Figure
9b), free-surface with absorbing-boundary-condition
(Figure 9c) and free-surface with PML absorbing-
boundary-condition (Figure 9d). The quality of synthetic
seismic data generated by employing free-surface with
PML absorbing-boundary-condition (Figure 9d) is
considered as the best representing the data
corresponding to the true nature of syncline and
anticline model without any unwanted spurious arrivals
or noises as compared to other three data sets (Figure
9a-c). Hence, the acoustic FD full-wave modelling using
staggered-grid scheme and employing the free-surface
with PML absorbing-boundary-condition can generate
good quality full-wave synthetic seismic data (Figure 9d)
required for seismic imaging as compared to the data
obtained with application of other boundary-conditions
(Figure 9a-c).
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Figure 10: (a) A five-layer acoustic, isotropic
and laterally-homogeneous complex graben
model having four different reflecting
interfaces is used for computation of full-wave
synthetic seismic data and imaging with the
help of same FD modelling scheme (Figure T).
The corresponding velocities of the five-layers
are 1500 m/s, 2500 m/s, 3500 m/s, 2000 m/s,
and 5500 m/s with (b) variable densities of 1.4
g/cm?, 2.2 g/cm, 2.4 g/cm?, 2.1 g/cm?, and 2.8
g/cm?, respectively for the five-layers from top
to bottom having maximum depth of the
model is 1.5 km and maximum horizontal
distance of the model is 3 km. The velocity
variation of the model is shown in color scale.
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(c) Complex graben model

To show the efficacy of the staggered-grid FD full-wave
modelling by using different boundary-conditions, we
have also employed this method for a complex graben
model (Figure 10) with corresponding model
parameters defined in Table-1. We have simulated the
model with 5 m grid-size for both x- and z-directions
having receiver interval of 20 m and source interval of
50 m for the wave propagation through the model using
the 20 Hz Ricker wavelet for the source. The full-wave
synthetic seismic data is generated for the complex
graben model by employing acoustic staggered-grid FD
wavefield simulation with S| of 4 ms and corresponding
record length of 1.5 s. The detail model parameters are
presented in Table-1 used for acoustic FD modelling and
computation of full-wave synthetic seismic data.

Wavefield simulation

We have employed the acoustic staggered-grid FD
modelling for wavefield simulation and computation of
full-wave synthetic seismic data for the complex graben
model (Figure 10). As mentioned above for the two
different models (Figures 4 and 7), we have also used the
different type of boundary-conditions for this model
(Figure10) to understand the nature of wave
propagation at different time-steps through the media
and generation of full-wave synthetic seismic data. We
have shown the wavefield simulation for the shot
located at 1.5 km distance, which is the centre of this
complex graben model (Figure 10) similar to the above
two models. At the time-step of 0.5 s, the corresponding
snapshot of the wave propagation through the model
show very complex wave-front with different type of
waves generated using no boundary-condition (Figure
11a), free-surface boundary-condition (Figure 11b),
free-surface with absorbing-boundary-condition (Figure
11¢) and free-surface with PML absorbing-boundary-
condition (Figure 11d) because the wave propagation is
through the vertically heterogeneous media. But we can
observe that, there is comparatively very less distortions
or noises of wave propagation in the snapshot for the
free-surface with PML absorbing-boundary-condition
(Figure 11d) as compared to no boundary-condition
(Figure 11a) and other two boundary-conditions (Figure
11b, ¢). However, at time-step of 075 s, the
corresponding snapshots of wave propagation show
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very complex nature of wavefield having different noises
and spurious arrivals superimposed on the reflections
from the different interfaces of the complex graben
model (Figure 10) with application of all the above-
mentioned boundary-conditions (Figure 11e-h). It is
clearly observed that, the snapshot of the wavefield
using free-surface with PML absorbing-boundary-
condition (Figure 11h) minimizes all the spurious
arrivals, back-scattered noises, multiples and other
distortion of waves as compared to the corresponding
snapshots of wave propagation using other three
boundary-conditions (Figure 11e-g). At increasing time
steps of 1.0 s, we can see that there is more complexity
of wavefield leading to spurious arrivals present in the
snapshots of wave propagation having application of no
boundary-condition (Figure 11i), free-surface boundary-
condition (Figure 11j), free-surface with absorbing-
boundary-condition (Figure 11k) as compared to free-
surface with PML absorbing-boundary-condition (Figure
111).

The snapshot generated at 1.0 s show very clear down-
going waves and reflected waves with complete
absorption of unwanted waves or noises using free-
surface with PML absorbing-boundary-condition (Figure
111) for the acoustic staggered-grid FD modelling.
Similarly, at the final time-step of 1.25 s, the
corresponding snapshot of the wave propagation has
limited arrivals similar to the other two models as
mentioned above at time-step of 2.0 s (Figures 5 and 8).
However, we could observe the presence of some
numerical phases and distortions of the wavefield in the
snapshots with application of no boundary-condition
(Figure 11m), free-surface boundary condition (Figure
11n), free-surface with absorbing-boundary-condition
(Figure 110) as compared to free-surface with PML
absorbing-boundary-condition (Figure 11p) for the
wave propagation through the media. Hence, with
increasing complexity of the model, we also observe that
there is no leakage of waves as well as complete
absorption of unwanted arrivals and numerical phases
generated due to FD modelling using the staggered-
grid scheme in the case of free-surface with PML
absorbing-boundary-condition (Figure 11d, h, |, p)
snapshots of the wave propagation through the
complex graben model (Figure 10) indicating the
efficacy of the method.
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Figure 11: The snapshots of corresponding wavefield simulation are shown for the complex graben model (Figure 10) at different
time-steps by employing the same (a) no boundary-condition, (b) free-surface boundary-condition, (c) free-surface with absorbing-
boundary-condition, and (d) free-surface with perfectly-matched-layer (PML) absorbing-boundary-condition for the wave
propagation at 0.5 s through the model. Similarly, the snapshots of the wave propagations at 0.75 s with the above-mentioned
boundary conditions are shown in panels (e) to (h), at 1.0 s in panels (i) to (I), at 1.25 s in panels (m) to (p), respectively for this five-

layer model.

The full-wave synthetic seismic data generated after
complete wavefield simulation through the complex
graben model (Figure 10) using no boundary-condition,
free-surface boundary-condition, free-surface with
absorbing-boundary-condition and free-surface with
PML absorbing-boundary-condition are shown in
(Figure 12a-d). There are several different types of
arrivals with direct arrivals, reflections from each layer,
back-scattered noises, multiples, diffractions, and
several different noises are present in the computed full-
wave synthetic seismic data obtained for the complex
graben model having five-layers (Figure 10). The
synthetic seismic data obtained without application of
any boundary-condition for this model having four
different reflecting interfaces (Figure 10) show various
arrivals like back-scattered noises, multiples, and other
numerical phases along with the direct arrivals and
reflection phases (Figure 12a). However, the effect of
these spurious arrivals, multiples and noises present in
the data diminishes with application of free-surface
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boundary-condition (Figure12b), free-surface with
absorbing-boundary-condition (Figure 12¢) and free-
surface with PML absorbing-boundary-condition (Figure
12d). The quality of synthetic seismic data generated by
employing free-surface with PML absorbing-boundary-
condition (Figure 12d) is considerably much better
without any unwanted arrivals or spurious noises as
compared to other three data sets (Figure 12a-c). Hence,
the acoustic FD full-wave modelling using staggered-
grid scheme and employing the free-surface with PML
absorbing-boundary-condition can generate high
quality full-wave synthetic seismic data (Figure 12d),
which are generally required for optimal seismic
imaging as compared to the data obtained with
application of other boundary-conditions (Figure 12a-c).

SEISMIC IMAGING

Seismic imaging using different migration techniques
play pivotal role for delineating the subsurface
geological structures. It accurately images the reflected



Finite-difference full-wave modelling and imaging of different geological structures using staggered-grid approach

(a) Distance (km)
10 15 20 25

(c) Distance (km)
10 15 20

(b) Distance (km)
A 10 15 20

(d) Distance (km)
. 10 15 20

Figure 12: The acoustic full-wave synthetic seismic data computed for the shot at 1.5 km of the complex graben model (Figure 10)
using the staggered-grid FD modelling scheme (Figure 1) by employing (a) no boundary-condition, (b) free-surface boundary-
condition, (c) free-surface with absorbing-boundary-condition, and (d) free-surface with PML absorbing-boundary-condition,
respectively. The synthetic seismic data show nature of different arrivals for the complex graben model having four different reflecting

interfaces.

and diffracted energy to provide accurate structures of
the geological targets of interest, which are very
important for hydrocarbon exploration to find potential
oil and gas bearing zones within the earth. Migration of
seismic data is considered as the most compute
intensive and cumbersome process in seismic data
processing sequence. Seismic migration is a wave
equation-based technique, which mainly attempts to
attenuate all the distortions from the reflection seismic
data by moving the events or reflections to their true
spatial subsurface locations. Migration technique mainly
tries to shorten, steepen and moves the dipping events
to their true subsurface position by collapsing the
diffractions or Fresnel zones observed in the seismic
sections resulting accurate subsurface image having
greater spatial resolution (Yilmaz, 1987). Migration is
also called an inverse process in which the recorded
events are back-propagated to their corresponding
reflection positions.

There are several ways to migrate the seismic data. The
numerical techniques employed can generally be
classified into three broad categories, namely:
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summation or integral methods such as Kirchhoff
migration (Schneider, 1978), finite-difference methods
(Claerbout, 1976, 1985), and transformation methods
such as f-k migration (Stolt, 1978; Gazdag, 1978; Gazdag
and Sguazzero, 1984). All these migration methods
make use of some approximations to the scalar wave
equation. The choice of the migration method to a
particular data set mainly depends upon the complexity
of the velocity model. Some migrations like f-k
migration are computationally fast but can handle only
the velocity variations with depth. Other migration
methods like Kirchhoff, finite-difference, phase shift plus
interpolation (PSPI) method can able to handle both
lateral and vertical velocity variations with complex
geological structures, but require large computational
resources in terms of speed, memory and /0. Migration
can be performed in either time or depth (Yilmaz, 1987).
In the presence of strong lateral velocity variations, time
migration followed by time to depth conversion poorly
image the reflected energy to its true subsurface
position. Hence, the depth migration is preferred for this
case. Depth migration generally compensates for ray
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bending, lateral velocity pull-ups and the subsurface
structure. The main advantage of depth migration is that
the output image is obtained in depth domain and
hence, this can be directly used for geological
interpretation without any conversion of seismic
sections from time domain to depth domain.

For the imaging of full-wave synthetic seismic data
generated, we have employed the 2-D wave-equation
based finite-difference pre-stack depth migration
(FDMIG) of different models (Figures 4, 7 and 10) used
in our study. The FD pre-stack depth migration offers
significant improvement over the Kirchhoff and f-k
migrations for imaging the complex geological
structures although computationally very expensive. We
have used the synthetic seismic data generated using
acoustic FD full-wave modelling by employing the free-
surface with PML absorbing-boundary-conditions
corresponding to the three different models (Figures 4,
7 and 10) for the FDMIG because of the data quality. The
theory of application for the FDMIG can be briefly
described based on the pioneering works of Claerbout
(1985), Yilmaz (1987), and Li (1991). Assuming that
seismic wave propagation in the earth follows the scalar
acoustic wave equation:

ax2  9y?  9z2  V2(xyz) ot?'

(16)

where P(x,y,z,t) is the pressure and V(x,y,z) is the
acoustic velocity of the media. The equation (16) is
transformed to the Helmholz equation by assuming that
the wave propagation occurs approximately along the
z-axis, then we can obtain the corresponding paraxial
wave equation (Claerbout, 1985; Yilmaz, 1987; Li, 1991)
as:

P iw viayz) (02 | 92
9z + V(x,y,2) \/1 + w? (axz + ayz) P (17)

where w is the frequency of the propagating wave. The
positive and negative signs of equation (17) correspond
to upcoming and downgoing wavefields. In fact, the two
waves propagate through the medium independently,
but the one-way method focuses on the primary arrival,
not on the result of any internal reflections within the
model, so the upcoming waves are ignored, only the
positive sign part of equation (17) is kept for FDMIG.
Hence, we only use the downgoing waves in the
wavefield continuation depth migration. The evaluation
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of the square-root operator is numerically difficult,
hence it is approximated by a series that has its origin in
a continued-fraction expansion (Claerbout, 1985; Yilmaz,
1987). The continued-fraction expansion can be
represented by ratios of polynomials (Ma, 1981) and the
polynomial coefficients can be optimized for
propagation angle (Lee and Suh, 1985). For
computational efficiency and numerical speed, the
continued-fraction expansion is split to separate the
operators in the x and y directions. This produces an
equation with the three terms, which can be solved
individually using the method of fractional steps. The
first-term is the thin-lens term and involves a solution of
a complex exponential. The second and third terms are
the diffraction terms for the x and y directions, which
require efficient tridiagonal solutions across the solution
domain. The approximation of the square-root operator,
and the splitting step operator introduce errors into the
migration. Two different filters have been provided in
the paraxial equation (17) to correct for these
approximations. The Graves and Clayton filter (Graves
and Clayton, 1990) corrects for errors introduced by the
operator splitting, and the Li filter (Li, 1991) attempts to
correct for both approximations. Finally, we apply the
absorbing-boundary-conditions  similar to those
described in Clayton and Engquist (1980) and Xu (1996).
Thus, the overall procedure of solution is to read the
data in a velocity plane, then compute the thin-lens and
diffraction terms, correct for errors using one of the
above filters, then apply an imaging condition to
produce an image, and finally write this image to disk.

This is repeated for each depth-step as we march down
into the subsurface earth. The detail steps of the
processing flow to obtain the final FDMIG image is
shown in Figure 13. The results obtained by employing
FDMIG to the full-wave synthetic seismic data obtained
with free-surface and PML absorbing-boundary-
conditions for the flat-horizontal model (Figure 4),
syncline and anticline model (Figure 7) and the complex
graben model (Figure 10) are shown in Figure 14. We
have used total thirty-one full-wave synthetic shot-
gathers generated (Table-1) using staggered-grid
acoustic FD modelling by employing free-surface PML
absorbing-boundary-condition (Figure 6) for imaging
the flat-horizontal model (Figure 4) with the help of
acoustic FDMIG (Figure 13). The image obtained show
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Input Data
(Synthetic seismic data (shot gathers) for different models)

Pre-processing of seismic data
(Apply geometry, sorting, muting

Define Parameters
(dx, dz, Vp, p, Finite-difference (FD) Migration algorithm)

Wavefield extrapolation by downward continuation FD
scheme using spatial and temporal discretization and
selection of depth-step size for each model

Input velocity model for extrapolation and wavefield
simulation

Computation of thin-lens and diffraction terms

Filtering to correct paraxial wave equation operators
(square-root and splitting step)

Finite-difference depth migration (FDMIG) <
(first depth-step size)

Imaging Condition
(Image accumulation, apply corrections, filtering and
stacking image at different depth-steps)

Migrated seismic image for each depth-step
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Figure 13. The processing workflow for 2-D wave-equation based finite-difference pre-stack depth migration (FDMIG) used for
imaging the acoustic full-wave synthetic seismic data computed by staggered-grid FD modelling and employing free-surface with
PML absorbing-boundary-condition for three different models (Figures 4, 7, and 10).

very clear reflecting horizon at 1.0 km depth (Figure 14a)
without any distortions or noises, which generally occur
at the edges of the model boundaries. The depth-step
size used for the migration of synthetic seismic data for
the flat-horizontal model (Figure 4) is 2 m for optimal
seismic imaging. The depth-step size (Az) is generally
computed using the formula Az = Vi /4fmaex (Yilmaz,
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1987). For the flat-horizontal model, the minimum value
of Vp is 2.0 km/s and maximum frequency (f,qx) Used is
250 Hz (i.e. Nyquist frequency corresponds to half the
sampling rate) for sampling rate of 2 ms corresponding
to the data generated. Hence, the depth-step size
computed is 2 m. For the FDMIG, the depth-step size is
a very critical parameter that affects the quality of the
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migrated image. A smaller depth-step size used in
FDMIG can provide an accurate image with increasing
cost of computational time, while a larger depth-step
size can save computational resources and time but
simultaneously may introduce several artifacts or under-
migration. The optimal depth-step size needs to trade-
off between the accuracy and computational efficiency.
It should be small enough to avoid significant artifacts
and aliasing, but large enough to minimize the
computational cost. Hence, the optimal depth-step size
is generally chosen based on the specific characteristics
of the data, the velocity model, and the desired image
quality.

Similarly, for the syncline and anticline model (Figure 7),
we have applied the acoustic FDMIG processing flow
(Figure 13) for the same thirty-one full-wave synthetic
shot gathers generated (Table-1) using staggered-grid
acoustic FD modelling by employing free-surface PML
absorbing-boundary-condition (Figure 9). The depth-
step size of 2 m is obtained using minimum velocity Vp
of 2.0 km/s and maximum frequency fp,q, of 250 Hz for
sampling rate of 2 ms. The corresponding FDMIG image
for the syncline and anticline model (Figure 7) is shown
in Figure 14b, which clearly delineate the syncline and
anticline structure with correct positioning of the
reflection events without any artifacts or noises due to
the migration errors. Hence, the depth-step size chosen
is optimal and minimized the artifacts generated during
the migration with computational efficiency (Figure
14b).

The complex graben model (Figure 10) with application
of acoustic FDMIG (Figure 13) for the forty-seven full-
wave synthetic shot gathers generated (Table-1) using
staggered-grid acoustic FD modelling by employing
free-surface PML absorbing-boundary-condition (Figure
12) show very clear image of all the structures (Figure
14c). The corresponding depth-step size of 3 m s
obtained using minimum V, of 1.5 km/s and maximum
frequency fiax Of 125 Hz for sampling rate of 4 ms. The
FDMIG image obtained for the complex graben model
(Figure 10) is shown in Figure 14c, which clearly depicts
all the complex subsurface structures with proper
positioning of the reflection events. There are very less
artifacts, distortions or noises present in the seismic
image, which are obvious due to the complexity of the
model having four different reflecting interfaces with
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substantial velocity variations through the different
layers. It is also important to note that the steeply
dipping reflectors of the graben along with the flat-
horizontal reflector beneath this are well positioned in
depth without much distortions and velocity pull-up,
which generally occur if other migration techniques are
used. The alternate syncline and anticline feature
present above the graben structure are also very well
resolved and positioned accurately in depth without any
artifacts or distortions. The flat-horizontal reflector
above the alternate syncline and anticline structure is
also very well imaged with proper positioning in depth.
Hence, all the structural features imaged are well
focused and accurate with correct positioning in the
depth (Figure 14c). This indicates that the depth-step
size chosen is optimal and minimized the artifacts
generated during the migration with computational
efficiency for this complex graben model.

CONCLUSIONS

Simulation of seismic wavefield using acoustic
staggered-grid finite-difference scheme plays a very
important role for generation of full-wave synthetic
seismic data. We have used this scheme for different
models like flat-horizontal layer model, syncline and
anticline model, and complex graben model for
wavefield simulation and generation of full-wave
synthetic seismic data. While performing wavefield
simulation through these different models, we have also
shown the wave propagation at different time-steps
using no boundary-conditions, free-surface boundary-
conditions, free-surface with absorbing-boundary-
conditions, and free-surface with PML absorbing-
boundary-conditions to illustrate the nature of wave
propagation from the snapshots taken for the three
benchmark models with increasing complexity. We have
also computed the acoustic full-wave synthetic seismic
data for these three models using the different
boundary-conditions, which implied that application of
free-surface with PML absorbing-boundary-condition
has superior data quality as compared to the other three
types of boundary-condition. The synthetic seismic data
using free-surface with PML absorbing-boundary-
condition are devoid of different types of noise and
considerably better data quality without any unwanted
arrivals or spurious noises as compared to other three
data sets. Hence, the acoustic FD full-wave modelling
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using staggered-grid scheme and employing the free-
surface with PML absorbing-boundary-condition can
generate high quality full-wave synthetic seismic data,
which are required for optimal seismic imaging as
compared to the other synthetic data obtained for these
models having spurious arrivals and different type of
noises predominant along with the required seismic
reflection arrivals. For optimal seismic imaging using the
full-wave synthetic seismic data computed using the
free-surface with PML absorbing-boundary-condition
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4.0

3o Figure 14. The corresponding FDMIG image
obtained for (a) flat-horizontal model, (b) syncline
and anticline model, and (c) complex graben
model. The image shows accurate positioning of
the different reflecting horizons without much
distortions for all the three models and no velocity
pull-ups below the steeply dipping reflectors for
the complex graben model indicating the
robustness and efficacy of the FDMIG for imaging
the complex geological structures.

for different models of this study, we have employed the
robust and highly compute intensive and accurate 2-D
wave-equation based FDMIG for seismic imaging. The
corresponding FDMIG  images show accurate
positioning of the reflectors corresponding to different
geological structures like flat-horizontal model, syncline
and anticline model, and the complex graben model of
this study having minimum artifacts and distortions
without any velocity pull-up below the steeply dipping
reflectors. This indicates that the migration algorithm
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used in this study is numerically stable and efficient to
suppress the noises generally occur due to migration
errors leading to very good focusing and proper
positioning of all the reflection events in their true
subsurface position. (7
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