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ABSTRACT

Classifying lithofacies is essential for understanding geological
variability in hydrocarbon reservoirs. Machine learning (ML)
tools are increasingly used to classify lithofacies for reservoir
characterization. In this study, we implemented three ML
classification algorithms: Multilayer Perceptron (MLP), Random
Forest (RF), and CNN-Shift Padding model to output each
individual probabilistic facies class in a range of 0 to 1 using an
open-source dataset from the Hugoton and Panoma gas fields,
Southwest Kansas, USA. The dataset consists of 4,149 samples
from 10 wells with facies identified from core description
where each well is characterized by five wireline logs and two
derived geological properties. Additional input features and
missing data was generated as part of data quality control and
data conditioning. To better reflect geological continuity,
predictions were evaluated using both exact facies labels and
geologically reasonable adjacent facies labels. While RF and
MLP yielded comparable predictive metrices, the performance
of MLP model was found optimal, achieving higher blind well
prediction accuracies when adjacent facies are considered.
Incorporation of probability-based facies prediction helped to
quantify model confidence and to identify ambiguous zones,
particularly within transitional intervals or thin beds. Results
show that MLP model reliably detects thin layers of Phylloid-
Algal Bafflestone (BS), a critical gas-bearing facies with higher
porosity and permeability, even with limited training samples.
Overall, the study demonstrates that integrating additional
input features, adjacent facies adjustment, and probability
thresholding provides a robust framework for lithofacies
prediction. The approach improves accuracy beyond
previously reported benchmarks and enhances interpretability
by quantifying prediction confidence, thereby supporting
more reliable geological modelling and reservoir
characterization in wells lacking core samples.
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INTRODUCTION

Machine learning (ML) has demonstrated significant
success in providing data-driven solutions in diverse
scientific disciplines and has emerged as a powerful tool

in geoscience to improve subsurface characterization
and decision-making. ML comprises a group of data
analysis  algorithms  that include classification,
regression, and clustering methods (Hall, 2016). In
lithofacies analysis, conventional manual and simplistic
statistical approaches are often time-consuming and
labour-intensive, limited in scalability, and unable to
capture the complexity of subsurface heterogeneity.
With the shift towards contemporary non-parametric
methods such as Artificial Neural Network (ANN), fuzzy
logic, principal component analysis (PCA), and other
advanced classification algorithms (Dubois et al., 2007;
Hall, 2016), supervised machine learning approaches
enable the extraction of subtle patterns from wireline
logs and facilitates lithofacies prediction in wells lacking
core data. Core samples remain essential for accurately
labelling rock types, as they provide direct petrophysical
and sedimentological information. Since core
acquisition is costly and limited to a few wells within
reservoir, supervised models trained on cored intervals
are commonly applied to uncored wells from the
available wireline logs (Dubois et al, 2007). However,
deterministic facies classifications may not adequately
represent uncertainty, which is a critical aspect for
reliable reservoir modelling and simulation. In this
regard, probabilistic machine learning offers a more
robust framework by not only predicting lithofacies but
also quantifying confidence levels, ultimately improving
subsurface modelling and reducing decision-making
risks.

The present study comprised five wireline log curves
over 10 wells that included gamma ray (GR), logarithmic
value of resistivity (ILD_log10), photo-electric factor (PE),
neutron-density porosity difference (DeltaPHI), and
average neutron-density porosity (PHIND). PE curves are
missing in a few wells, which is a vital input feature for
the rock-type classification problem. The dataset also
contains two geological constraining variables, viz. non-
marine and marine identifier (NM and M), and relative
position defined as RELPOS. We implemented non-
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linear machine learning regression techniques to
produce synthetic PE logs where input features are basic
wireline logs. We considered the whole dataset
including additional PE synthetic logs for rock-type
prediction. The studied sedimentary rock comprised of
nine lithofacies classes as reported by (Dubois et al,
2007), which were labelled through detailed and
rigorous petrophysical evaluation and core analysis. We
termed them in short nomenclature throughout this
paper, which are listed in Table 1.

Table-1: Facies nomenclature with adjacent facies.
(Dubois et al, 2007)

Facies Description Acronyms Adjacent facies

1 Non-marine sandstone SS 2

2 Non-marine coarse siltstone CSis 1,3

3 Non-marine fine siltstone FSiS 2

4 Marine siltstone and shale SiSh 5

5 Mudstone MS 4,6

6 Wackstone WS 5,7,8

7 Dolomite D 6,8

8 Packstone-grainstone PS 6,7,9

9 Phylloid-algal bafflestone BS 7,8

According to Dunham's carbonate rock texture
classification (Dunham, 1962), MS, WS, and PS are
combination of mud and grain supported carbonate
rocks, which makes their distinction challenging due to
gradational boundaries, subjective  grain-size
estimation, and the difficulty of recognizing baffling
structures. Figure 1 shows the facies distribution across
different wells in the dataset. Each bar represents the
total count of facies within a well, with colours
corresponding to the nine facies classes. This plot
highlights both the variability in facies occurrence and
the imbalance in facies representation across wells.
Previously published Hall's work predicted 43% accuracy
on a blind well with the application of the support vector
machine classifier algorithm (Hall, 2016). The present
approach considered three non-parametric supervised
ML classification algorithms: Multi-layer perceptron
(MLP), Random Forest (RF), and Convolution Neural
Network with Shift padding (CNN-shift). Then we
compared to choose the best algorithm by observing
classification metrics on cross-validation samples.
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Figure 1: Facies distribution across wells showing the total count and relative abundance of each facies class.
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Finally, a comparative analysis has been conducted
between the probability scores of above 0.50 and 0.90
to report the advantages and limitations of traditional
machine learning approaches in achieving accurate
facies classification.

This study signifies the ability of probabilistic outcome
of machine learning algorithms to capture lithofacies

Hugoton natural gas area

MORTON

transitions and quantify uncertainty, while comparing
algorithmic performance against previously reported
approaches (Hall, 2016). This work further explores the
implications of probability-driven facies mapping for
subsurface  modelling, particularly in identifying
reservoir-prone facies.

Greenwood field

:I Panoma field

STUDY AREA

The Hugoton Gas Field is one of the largest natural gas
accumulations in North America, located primarily in
western Kansas as a northern shelf extending into larger
and deeper subsurface into Oklahoma and Texas, known
as the Anadarko basin (Mazzullo, 1998). Geologically,
the region comprises Permian-age carbonates
(limestones and dolomites) and siliciclastic deposits
resulting from subsequent marine transgression and
regressions on a gently sloping shelf (Dubois et al,
2006). The field's primary hydrocarbon trap results from
lateral facies changes. Moving westward and up-dip, the
porous marine limestones and dolomites of the Chase
and Council Grove Groups transition into tight red
shales, with the Council Grove group restricted to the
Panoma field, which lies beneath and is geologically
overlapped by the Hugoton Field (Figure 2) (Hemsell,
1939). This facies pinch-out forms a regional
stratigraphic seal that confines gas within the permeable
carbonates. The internal heterogeneity of the reservoir
arises from the complex interlayering of grain-
supported carbonates primarily windblown silts, very
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fine sands and clay rich silts with paleosols. The main pay
zones are continuous across broad areas, but the vertical
connectivity of these reservoirs may be restricted by
laterally persistent nonmarine siltstones and shales
(Figure 3) (Olson et al, 1997). The Panoma Field is
strongly associated with the Hugoton and is
characterized by similar stratigraphic units but exhibits
unique facies and depositional cycles. There are strong
lateral facies variations, from thick nonmarine shale and
silt (northwest) to marine carbonates (southeast). These
facies changes create stratigraphic traps by laterally
grading porous carbonates into tighter, nonmarine
packages, directly impacting reservoir quality and
geometry (Halotel et al.,, 2020).

Depositional cyclicity in both the Hugoton and Panoma
Fields plays a defining role in their reservoir architecture,
with each field exhibiting vertically stacked sequences of
alternating marine and nonmarine intervals that were
deposited in response to rapid, glacially driven sea-level
fluctuations during the Permian period. These repeated
fourth-order transgression-regression cycles generate
characteristic shoaling-upward successions, where
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porous marine carbonates are overlain by tighter
nonmarine shale and siltstone beds (Figure 3). This
vertical pattern produces a complex stratigraphy, filling
the reservoirs with significant heterogeneity both
vertically and laterally, and results in intervals of widely
varying reservoir quality and connectivity.

Accurate identification and mapping of these cyclic
successions, such as their location, thickness, and extent,
are fundamental for effective reservoir simulation,
modelling, and optimal field development, as they

GEOHORIZONS, Vol. 30, No. 2, October 2025
© SPG India. All rights reserved.

J/

Model Validation,
Testing and
Optimization

in the current study for facies
prediction and  probability
quantification.

directly influence pay zone prediction, hydrocarbon
recovery, and well performance in these giant, mature
gas fields.

METHODOLOGY

Any ML problem can be broadly structured into five key
stages, as illustrated by the workflow diagram in Figure
4. Critical stages include the preparation of input
datasets, assessment of statistical significance, and
visualization of the input-output mapping function,
which is essential for the success of an ML project.
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Quality control of well log data was performed to ensure
the reliability and consistency of the dataset prior to
analysis. As can be observed from Figure 5 (half-violin
plots), the data distribution is illustrated by combining
kernel density estimation (KDE) with conventional box
plot statistics. The half-violin shape reflects the
probability density of the data across the measured
range, providing insight into distribution asymmetry and
spread. Within the half-violin, the embedded box plot
marks the interquartile range (IQR = Q3 - Q1, where Q1
is the 25th percentile and Q3 is the 75th percentile), the
median, and whiskers that extend between Q1 - 1.5xIQR
to Q3 + 1.5xIQR, beyond which points are typically
flagged as statistical outliers. Certain points in the figure
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extend beyond these whisker limits and may appear as
outliers under the box-plot convention. However, upon
incorporating facies information, it becomes evident
that these points coincide with thin-bed facies
transitions. Thus, rather than being statistical anomalies,
they represent geologically significant variations.
Removing such points would risk losing valuable
information about facies heterogeneity. Since input
variables often have different measurement scales, data
transformation is applied to normalize all features to a
uniform scale prior to model training. This preprocessing
step facilitates faster convergence of ML algorithms and
satisfies the requirements of certain modeling methods.
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Figure 5: Half-violin plots of wireline logs for each well, showing data density and embedded box-plot statistics (median, IQR,
whiskers). Points beyond whiskers may appear as outliers but often represent geologically significant variations reflecting subsurface

heterogeneity.

Among five original wireline logs GR, ILD_log10, PE,
DeltaPHI, and PHIND, PE and GR are the best lithology
predictors as observed from data visualization and
histogram plots. Since the previous work of Dubois et al.
(2007) and Hall (2016) did not achieve an exact facies
accuracy of more than 50% on a blind well with the
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wireline data, four more logs, namely, neutron porosity
(pn), density porosity (o), bulk density (py), and volume
of shale (Vsn) have been computed from existing
measurements to increase the number of input features.
Matrix density values of each lithofacies are unique
distinguishable physical properties as observed from
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core measurements. Hence, we attempted to calculate
continuous bulk density log, with an assumption of
100% brine-saturated rock (pfyiq = 1.0 g/cc).

1

Py = E(2¢ND + 4g) M

¢p =5 Qpnp — L0) )
— _ GR—GRsana

VSh - GRshale— GRsand (3)
_ @ (4

Py = (1 - ﬁ) Pma T (ﬁ) Pfluid 4)

where Ag refers to DeltaPHI, ¢y, is average neutron-
density porosity, GRsang and GRshale refer to sand and
shale line respectively. pms and puias represent matrix and
fluid density respectively.

Incorporation of the above derived additional
petrophysical logs could be beneficial to enhance the
predictive accuracy of classification models compared to
the existing wireline logs as reported in the literature
(Lopes and Jorge, 2017). For the classification of
lithofacies, we have used RF, MLP, and CNN-shift. A brief
intuition behind each algorithm and its functioning is
provided in Appendix-A.

For RF and MLP classifier, we chose to extract output
that returns the probability estimates for each class label
for a given input rather than standard majority voting
system. In case of CNN-shift, “SoftMax” activation
function outputs probability estimates over 0 to 1 scale
for each class. Further, the prediction of probability for
each feature class has been estimated, and
quantification of facies with high confidence interval.

The confusion matrix and other statistical assessment
metrics can be used to evaluate the classification
accuracy of any predictive model (Powers, 2011). Several
evaluation scores, including precision (P), recall (R), F1-
score, and accuracy (A), were employed for model
validation based on the confusion matrix.

= TrrEnerrT ©)
TP
T TP+FP (6)
TP
 TP+FN (7)
F1—score = 2 x 28 (8)
P+R
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where TP, TN, FN, and FP refer to true positive, true
negative, false negative, and false positive, respectively.
For adjacent facies accuracy calculation, we have created
an array to represent the facies adjacent to each other
as defined in Table 1.

RESULTS AND DISCUSSION

Eleven input features were utilized to predict target
variables (lithofacies) from ten wells. Filling of PE logs in
two wells increased the number of datasets from 3232
to 4,149. For facies classification out of 10 wells, 1 well
was kept aside at a time to ensure robustness of blind
testing and to generate accuracy score of the classifier
between the predicted and actual facies labels. The
remaining datasets were sliced into 80:10:10
proportions as training, validation, and testing sets,
respectively. Supervised machine learning algorithms
were applied to the training dataset with optimum
hyperparameters to learn the mapping function
between input features and the target facies classes.

We first evaluated model performance (cf. equation 5)
using exact facies, where only predictions that match the
true facies, are counted as correct, i.e., true positive (TP).
However, since lithofacies are not strictly discrete and
often display transitional characteristics, achieving
perfect accuracy under this criterion is inherently
difficult. To better reflect geological complexity,
predictions were considered correct (true positives) if
they matched either the true facies label or any of the
geologically reasonable adjacent facies listed in Table 1.
The metric scores considering only true facies
predictions and those including adjacent facies
predictions on blind data are summarized in Table 2 to
identify the most reliable classifier. MLP and RF classifier
algorithms show comparable metric scores, while the
metric score of CNN-shift is lower than the two models.
The results of the predicted facies output from the three
models in comparison to the original facies distribution
for the blind well testing are shown in Figure 6. Also, the
predicted output results from the three models adjusted
using the adjacent facies concept are shown in Figure7.
Upon comparing Figure 6 and Figure 7, one can notice
that the metric score has increased significantly when
using adjacent labels for prediction, as seen from the
metric scores in Table 2. Hence, it is inferred that any of
the mentioned classifiers is a suitable facies classifier
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model. For this case, MLP is selected for blind well facies

prediction.

Table 2: Classification metric score for true facies (Original) and including geologically reasonable neighboring facies (Adjacent) for

different blind well testing.

Model Blind Well Accuracy F1 Score Recall Precision
Original Adjacent Original Adjacent Original | Adjacent Original Adjacent
MLP | ALEXANDERD 0.82 0.96 0.82 0.97 0.82 0.97 0.81 0.97
SHRIMPLIN 0.86 0.98 0.87 0.98 0.87 0.98 0.88 0.97
Average 0.84 0.97 0.845 0.975 0.845 0.975 0.845 0.97
RF ALEXANDER D 0.80 0.95 0.79 0.96 0.8 0.96 0.79 0.96
SHRIMPLIN 0.80 0.97 0.79 0.97 0.78 0.97 0.81 0.97
Average 0.80 0.96 0.79 0.965 0.79 0.965 0.8 0.965
CNN- | ALEXANDER D 0.68 0.88 0.59 0.88 0.59 0.88 0.6 0.89
Shift | SHRIMPLIN 0.65 0.94 0.66 0.95 0.65 0.95 0.64 0.95
Average 0.665 0.91 0.625 0.915 0.62 0.915 0.62 0.92
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Figure 6: Gamma ray and photoelectric (PE) logs for the ALEXANDER D well in the first two tracks. Predicted facies from the MLP,
CNN-shift, and RF models are shown alongside the true facies, with predictions made considering the true facies labels.

In a real geological setting, boundaries between facies
are gradational rather than sharp; hence, it is important
to know how confident the model is in its prediction at
every depth. Hence, the probability of the predicted
facies plot helps to identify these ambiguous zones,
where the model hesitates between two or more facies.
It helps to understand the cause behind the prediction
of the facies by the model, which may be either because
the facies truly dominate at a particular depth or there is
a higher probability of that facies being present at that
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depth among other facies with lower probabilities
(Figure 8).

It becomes significant when determining the reliability
of predictions in transition zones or thin layers. For
example, in Figure 8, at slightly below 3000 ft, a thin layer
transitioning from PS to WS, captured by MLP and RF
algorithms with varying proportions. By comparing
multiple models, we can visually assess which model has
higher confidence, smoother transitions, or better
alignment with the true facies (Figure 8).
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Figure 7: Gamma ray and PE logs for the ALEXANDER D well in the first two tracks. Predicted facies from the MLP, CNN-shift, and
RF models are shown alongside the true facies, with predictions made considering the adjacent facies in labels.
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Figure 8: Predicted class probabilities for each facies are
shown in tracks for the MLP, CNN-shift, and RF models,
compared with the true facies for the ALEXANDER D well.
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and 90% confidence intervals. A reduction in classified facies is
observed at the >90% confidence level.
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Figure 9 shows the true facies, the original MLP
predictions, and the predictions after including adjacent
facies information. The last two columns display the
predictions when only probabilities greater than 0.5 and
0.9 are considered. As the cutoff increases, more white
spaces appear, meaning the model is less confident in
those intervals. Mainly, the facies of Mudstone (MS),
Wackstone (WS), and Packstone-Grainstone (PS)
information are getting whitened as the probability
cutoff increases, which means those facies predictions
do not have much confidence. This highlights how using
adjacent information improves predictions as well as
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how probability thresholds help in identifying the most
reliable results.

Figure 10 illustrates the performance and reliability of
the MLP model using blind-well testing. The model was
trained by leaving one well blind in each iteration to
evaluate generalization. When ALEXANDER D was used
as the blind well, the accuracy improved from 0.82 to
0.96 after incorporating adjacent facies information.
Similarly, for SHRIMPLIN, the accuracy increased from
0.86 to 0.98 with the same adjustment, demonstrating
the positive impact of contextual facies integration.

Well: SHRIMPLIN
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Figure 10: Blind well prediction comparison between the ALEXANDER D and SHRIMPLIN wells. In the plots, intervals where
predicted probabilities for any facies classes did not exceed a 90% confidence level are left blank, while intervals with probabilities
higher than 90% are displayed. This representation highlights that the MLP model demonstrates good generalization performance.

Several important observations can be made from the
results:

1. Accurate prediction of Marine Siltstone and Shale
(SiSh): The model consistently identifies the SiSh
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facies with high accuracy, even for thin beds, closely
matching the true facies distribution.

2. Reliable detection of Phylloid-Algal Bafflestone
(BS): Despite the limited number of BS
samples(Figure 1), the model successfully predicts
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very thin BS layers (e.g., ~2900-2950 ft in
ALEXANDER D and ~2800-2850 ft and ~3000-3050
ft in SHRIMPLIN) with probabilities exceeding 90%.
This is particularly significant since BS represents
potential gas-bearing facies.

3. Confusion between Non-Marine Coarse Siltstone
(CSiS) and SiSh: Some misclassification occurs
where small probabilities of SiSh are assigned to
CSiS intervals, even though the two are not
adjacent facies. However, given that both are
siltstone-dominated lithologies, this overlap is
reasonable. Importantly, the model still
distinguishes CSiS from SiSh with sufficient
probability resolution, indicating robustness in
handling transitional or thin-bed facies.

4. Uncertainty in MS-WS-PS transitions: Most of the
white intervals in the >90% probability plots
correspond to zones dominated by Mudstone (MS),
Wackestone (WS), and Packstone-Grainstone (PS).
Around 3000 ft in both wells, these facies exhibit
nearly equal probability distributions without any
class exceeding the 90% threshold. Since these
facies occur in adjacent transitions (MS < WS « PS)
(Table 1), the model exhibits ambiguity, reflecting
genuine geological similarity rather than random
misclassification.

By the addition of more input features including PE and
bulk density logs as well as increasing number of
training samples, substantial improvement of model’s
prediction performance have been achieved compared
to results from MLP and SVM algorithm reported in
previously published works (Dubois et al, 2007; Hall,
2016). Overall, the results confirm that the MLP model
has captured both thick and thin facies distributions with
high reliability, while probability thresholding provides
insight into facies-specific uncertainties and confidence
levels.

CONCLUSIONS

In this study, we demonstrated the advantages of
capturing facies class transition by adopting
probabilistic facies classification through the application
of multiple machine learning algorithms. Based on
classification metrics performance on blind test
(accuracy of 0.82 and 0.86, and F1-score of 0.82 and 0.87
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for ALEXANDER D and SHRIMPLIN, respectively), Multi-
layer  Perceptron (MLP)- an ANN algorithm
outperformed the remaining Random Forest (RF) and
Convolutional neural network (CNN) classifier.
Probabilistic driven classification output in the range of
0 to 1 scale not only resolved geologically meaningful
transition of facies but also mapped one of the
prominent gas-bearing facies, Phylloid-Algal Bafflestone
(BS) in the Hugoton gas field which could be beneficial
for subsurface modelling. (7
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APPENDIX

Random Forest (RF)

Random Forest is an ensemble learning method that
constructs a number of decision trees and combines
their outputs to improve predictive performance
(Breiman, 2001). Each tree is trained on a bootstrap
sample (random subset) of the training data, and at
every split, only a random subset of features is
considered. This dual randomness, data sampling, and
feature selection reduces variance and helps prevent
overfitting compared to a single decision tree.

For regression tasks, the predictions from individual
trees are averaged to obtain the final continuous output.
For classification tasks, each tree casts a “vote” for the
predicted class, and the final class is chosen by majority
voting and probability across all trees. This aggregation
mechanism allows Random Forest to produce stable,
generalizable, and robust predictions in both categorical
and continuous settings, making it effective even in the
presence of noise or highly variable data.

Multilayer Perceptron (MLP)

The Multilayer Perceptron is a feedforward artificial
neural network (ANN) that models complex nonlinear
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relationships between input features and output classes
(Rumelhart et al., 1986). It consists of an input layer, one
or more hidden layers, and an output layer, where each
neuron applies a weighted linear transformation
followed by a nonlinear activation function. During
training, the network learns hierarchical feature
representations through backpropagation, in which
errors are propagated backward, and weights are
updated using gradient descent to minimize a
predefined loss function. By stacking multiple layers,
MLPs can capture intricate patterns in geological data,
enabling effective lithofacies classification.

Convolutional Neural Network with Shift padding (CNN-
shift)

The Convolutional Neural Network with shift
modification extends conventional CNNs to capture
spatially correlated patterns in sequential data such as
well logs and seismic traces (Lecun et al., 1998; Wei et
al, 2019). CNNs operate by applying convolutional
filters across the input to detect local features, followed
by pooling operations that reduce dimensionality while
preserving essential information. The “shift” mechanism
incorporates shifted windows or neighbouring slices of
data, enhancing the model’s ability to detect lithofacies
transitions and stratigraphic continuity. Extracted
features are then passed through fully connected layers
to map them into lithofacies probability classes, making
CNN-shift particularly effective for identifying facies
boundaries in depth-dependent datasets.

Since well log responses are one-dimensional arrays
(e.g, Gamma Ray or ILD_log10), applying 2D
convolution directly is not possible. To enable the use of
Conv2D, the 1D log sequences must be transformed into
a two-dimensional representation. This is achieved
through the shift padding method, where the original log
values are arranged into overlapping shifted sequences.
Each subsequent row is a circularly shifted version of the
initial 1D array, so that local depth patterns and
neighbouring variations are spatially embedded in a 2D
grid. This structured transformation captures both
vertical continuity and lateral shifts within the data,
allowing CNN filters to extract important spatial features
from well logs that would otherwise be lost in a pure 1D
formulation.
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SoftMax activation function is used in the output layer
of the CNN network, which helps us with multi-class
classification. This activation function produces a
probability distribution across all classes (sums to 1). The
equation of the activation function is given as

o(z;) = W, fori=12,..k 9)

where, z; = input score (logit) for class i, k = total number
of classes, a(z;) = probability of class i.
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Fault-bend fold in Kioto Limestone at Kibber Village, Spiti-Zanskar Basin.
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