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ABSTRACT 

Classifying lithofacies is essential for understanding geological 

variability in hydrocarbon reservoirs. Machine learning (ML) 

tools are increasingly used to classify lithofacies for reservoir 

characterization. In this study, we implemented three ML 

classification algorithms: Multilayer Perceptron (MLP), Random 

Forest (RF), and CNN-Shift Padding model to output each 

individual probabilistic facies class in a range of 0 to 1 using an 

open-source dataset from the Hugoton and Panoma gas fields, 

Southwest Kansas, USA. The dataset consists of 4,149 samples 

from 10 wells with facies identified from core description 

where each well is characterized by five wireline logs and two 

derived geological properties. Additional input features and 

missing data was generated as part of data quality control and 

data conditioning. To better reflect geological continuity, 

predictions were evaluated using both exact facies labels and 

geologically reasonable adjacent facies labels. While RF and 

MLP yielded comparable predictive metrices, the performance 

of MLP model was found optimal, achieving higher blind well 

prediction accuracies when adjacent facies are considered. 

Incorporation of probability-based facies prediction helped to 

quantify model confidence and to identify ambiguous zones, 

particularly within transitional intervals or thin beds. Results 

show that MLP model reliably detects thin layers of Phylloid-

Algal Bafflestone (BS), a critical gas-bearing facies with higher 

porosity and permeability, even with limited training samples. 

Overall, the study demonstrates that integrating additional 

input features, adjacent facies adjustment, and probability 

thresholding provides a robust framework for lithofacies 

prediction. The approach improves accuracy beyond 

previously reported benchmarks and enhances interpretability 

by quantifying prediction confidence, thereby supporting 

more reliable geological modelling and reservoir 

characterization in wells lacking core samples. 

KEYWORDS 

Lithofacies, probability, machine learning, classification,  

multilayer perceptron  

 

INTRODUCTION 

Machine learning (ML) has demonstrated significant 

success in providing data-driven solutions in diverse 

scientific disciplines and has emerged as a powerful tool 

in geoscience to improve subsurface characterization 

and decision-making. ML comprises a group of data 

analysis algorithms that include classification, 

regression, and clustering methods (Hall, 2016). In 

lithofacies analysis, conventional manual and simplistic 

statistical approaches are often time-consuming and 

labour-intensive, limited in scalability, and unable to 

capture the complexity of subsurface heterogeneity. 

With the shift towards contemporary non-parametric 

methods such as Artificial Neural Network (ANN), fuzzy 

logic, principal component analysis (PCA), and other 

advanced classification algorithms (Dubois et al., 2007; 

Hall, 2016), supervised machine learning approaches 

enable the extraction of subtle patterns from wireline 

logs and facilitates lithofacies prediction in wells lacking 

core data. Core samples remain essential for accurately 

labelling rock types, as they provide direct petrophysical 

and sedimentological information. Since core 

acquisition is costly and limited to a few wells within 

reservoir, supervised models trained on cored intervals 

are commonly applied to uncored wells from the 

available wireline logs (Dubois et al., 2007). However, 

deterministic facies classifications may not adequately 

represent uncertainty, which is a critical aspect for 

reliable reservoir modelling and simulation. In this 

regard, probabilistic machine learning offers a more 

robust framework by not only predicting lithofacies but 

also quantifying confidence levels, ultimately improving 

subsurface modelling and reducing decision-making 

risks. 

The present study comprised five wireline log curves 

over 10 wells that included gamma ray (GR), logarithmic 

value of resistivity (ILD_log10), photo-electric factor (PE), 

neutron-density porosity difference (DeltaPHI), and 

average neutron-density porosity (PHIND). PE curves are 

missing in a few wells, which is a vital input feature for 

the rock-type classification problem. The dataset also 

contains two geological constraining variables, viz. non-

marine and marine identifier (NM and M), and relative 

position defined as RELPOS. We implemented non-
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linear machine learning regression techniques to 

produce synthetic PE logs where input features are basic 

wireline logs. We considered the whole dataset 

including additional PE synthetic logs for rock-type 

prediction. The studied sedimentary rock comprised of 

nine lithofacies classes as reported by (Dubois et al., 

2007), which were labelled through detailed and 

rigorous petrophysical evaluation and core analysis. We 

termed them in short nomenclature throughout this 

paper, which are listed in Table 1.  

Table-1: Facies nomenclature with adjacent facies. 

(Dubois et al., 2007)  

 

According to Dunham’s carbonate rock texture 

classification (Dunham, 1962), MS, WS, and PS are 

combination of mud and grain supported carbonate 

rocks, which makes their distinction challenging due to 

gradational boundaries, subjective grain-size 

estimation, and the difficulty of recognizing baffling 

structures. Figure 1 shows the facies distribution across 

different wells in the dataset. Each bar represents the 

total count of facies within a well, with colours 

corresponding to the nine facies classes. This plot 

highlights both the variability in facies occurrence and 

the imbalance in facies representation across wells. 

Previously published Hall’s work predicted 43% accuracy 

on a blind well with the application of the support vector 

machine classifier algorithm (Hall, 2016). The present 

approach considered three non-parametric supervised 

ML classification algorithms: Multi-layer perceptron 

(MLP), Random Forest (RF), and Convolution Neural 

Network with Shift padding (CNN-shift). Then we 

compared to choose the best algorithm by observing 

classification metrics on cross-validation samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Facies distribution across wells showing the total count and relative abundance of each facies class. 
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Finally, a comparative analysis has been conducted 

between the probability scores of above 0.50 and 0.90 

to report the advantages and limitations of traditional 

machine learning approaches in achieving accurate 

facies classification. 

This study signifies the ability of probabilistic outcome 

of machine learning algorithms to capture lithofacies 

transitions and quantify uncertainty, while comparing 

algorithmic performance against previously reported 

approaches (Hall, 2016). This work further explores the 

implications of probability-driven facies mapping for 

subsurface modelling, particularly in identifying 

reservoir-prone facies. 

 

  

 

 

 

 

Figure 2: Schematic vertical 

section (West-East) of the 

Hugoton and Panoma gas 

field. Modified from Kansas 

Geological Survey (Carr and 

Sawin, 1997) 

 

STUDY AREA 

The Hugoton Gas Field is one of the largest natural gas 

accumulations in North America, located primarily in 

western Kansas as a northern shelf extending into larger 

and deeper subsurface into Oklahoma and Texas, known 

as the Anadarko basin (Mazzullo, 1998). Geologically, 

the region comprises Permian-age carbonates 

(limestones and dolomites) and siliciclastic deposits 

resulting from subsequent marine transgression and 

regressions on a gently sloping shelf (Dubois et al., 

2006). The field’s primary hydrocarbon trap results from 

lateral facies changes. Moving westward and up-dip, the 

porous marine limestones and dolomites of the Chase 

and Council Grove Groups transition into tight red 

shales, with the Council Grove group restricted to the 

Panoma field, which lies beneath and is geologically 

overlapped by the Hugoton Field (Figure 2) (Hemsell, 

1939). This facies pinch-out forms a regional 

stratigraphic seal that confines gas within the permeable 

carbonates. The internal heterogeneity of the reservoir 

arises from the complex interlayering of grain-

supported carbonates primarily windblown silts, very  

 

 

fine sands and clay rich silts with paleosols. The main pay 

zones are continuous across broad areas, but the vertical 

connectivity of these reservoirs may be restricted by 

laterally persistent nonmarine siltstones and shales 

(Figure 3) (Olson et al., 1997). The Panoma Field is 

strongly associated with the Hugoton and is 

characterized by similar stratigraphic units but exhibits 

unique facies and depositional cycles. There are strong 

lateral facies variations, from thick nonmarine shale and 

silt (northwest) to marine carbonates (southeast). These 

facies changes create stratigraphic traps by laterally 

grading porous carbonates into tighter, nonmarine 

packages, directly impacting reservoir quality and 

geometry (Halotel et al., 2020).  

Depositional cyclicity in both the Hugoton and Panoma 

Fields plays a defining role in their reservoir architecture, 

with each field exhibiting vertically stacked sequences of 

alternating marine and nonmarine intervals that were 

deposited in response to rapid, glacially driven sea-level 

fluctuations during the Permian period. These repeated 

fourth-order transgression-regression cycles generate 

characteristic shoaling-upward successions, where  
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porous marine carbonates are overlain by tighter 

nonmarine shale and siltstone beds (Figure 3). This 

vertical pattern produces a complex stratigraphy, filling 

the reservoirs with significant heterogeneity both 

vertically and laterally, and results in intervals of widely 

varying reservoir quality and connectivity.  

Accurate identification and mapping of these cyclic 

successions, such as their location, thickness, and extent, 

are fundamental for effective reservoir simulation, 

modelling, and optimal field development, as they  

 

 

 

 

 

 

 

 

Figure 3: Stratigraphy of the 

Council Grove demonstrating 

the geological complexity with 

the marine and non-marine 

sequences bounded by 

unconformities on exposed 

carbonate surfaces. (Kansas 

Geological Survey, 2003) 

 

 

 

 

 

Figure 4: Machine learning 

classification pipeline applied 

in the current study for facies 

prediction and probability 

quantification. 

 

directly influence pay zone prediction, hydrocarbon 

recovery, and well performance in these giant, mature 

gas fields.  

METHODOLOGY 

Any ML problem can be broadly structured into five key 

stages, as illustrated by the workflow diagram in Figure 

4. Critical stages include the preparation of input 

datasets, assessment of statistical significance, and 

visualization of the input-output mapping function, 

which is essential for the success of an ML project. 
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Quality control of well log data was performed to ensure 

the reliability and consistency of the dataset prior to 

analysis. As can be observed from Figure 5 (half-violin 

plots), the data distribution is illustrated by combining 

kernel density estimation (KDE) with conventional box 

plot statistics. The half-violin shape reflects the 

probability density of the data across the measured 

range, providing insight into distribution asymmetry and 

spread. Within the half-violin, the embedded box plot 

marks the interquartile range (IQR = Q3 – Q1, where Q1 

is the 25th percentile and Q3 is the 75th percentile), the 

median, and whiskers that extend between Q1 - 1.5×IQR 

to Q3 + 1.5×IQR, beyond which points are typically 

flagged as statistical outliers. Certain points in the figure 

extend beyond these whisker limits and may appear as 

outliers under the box-plot convention. However, upon 

incorporating facies information, it becomes evident 

that these points coincide with thin-bed facies 

transitions. Thus, rather than being statistical anomalies, 

they represent geologically significant variations. 

Removing such points would risk losing valuable 

information about facies heterogeneity. Since input 

variables often have different measurement scales, data 

transformation is applied to normalize all features to a 

uniform scale prior to model training. This preprocessing 

step facilitates faster convergence of ML algorithms and 

satisfies the requirements of certain modeling methods.

 

Figure 5: Half-violin plots of wireline logs for each well, showing data density and embedded box-plot statistics (median, IQR, 

whiskers). Points beyond whiskers may appear as outliers but often represent geologically significant variations reflecting subsurface 

heterogeneity. 

Among five original wireline logs GR, ILD_log10, PE, 

DeltaPHI, and PHIND, PE and GR are the best lithology 

predictors as observed from data visualization and 

histogram plots. Since the previous work of Dubois et al. 

(2007) and Hall (2016) did not achieve an exact facies 

accuracy of more than 50% on a blind well with the 

wireline data, four more logs, namely, neutron porosity 

(φN), density porosity (φD), bulk density (ρb), and volume 

of shale (Vsh) have been computed from existing 

measurements to increase the number of input features. 

Matrix density values of each lithofacies are unique 

distinguishable physical properties as observed from 
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core measurements. Hence, we attempted to calculate 

continuous bulk density log, with an assumption of 

100% brine-saturated rock (𝜌𝑓𝑙𝑢𝑖𝑑 = 1.0 𝑔/𝑐𝑐). 

𝜑𝑁 =
1

2
(2𝜑𝑁𝐷 +  𝛥𝜑)    (1) 

𝜑𝐷 =
1

2
(2𝜑𝑁𝐷 −  Δ𝜑)    (2) 

𝑉𝑠ℎ =
𝐺𝑅−𝐺𝑅𝑠𝑎𝑛𝑑 

𝐺𝑅𝑠ℎ𝑎𝑙𝑒− 𝐺𝑅𝑠𝑎𝑛𝑑
     (3) 

𝜌𝑏 = (1 −  
φ𝑁𝐷

100
) 𝜌𝑚𝑎 + (

𝜑𝑁𝐷

100
) 𝜌𝑓𝑙𝑢𝑖𝑑   (4) 

where 𝛥𝜑 refers to DeltaPHI, 𝜑𝑁𝐷 is average neutron-

density porosity, GRsand and GRshale refer to sand and 

shale line respectively. ρma and ρfluid represent matrix and 

fluid density respectively.  

Incorporation of the above derived additional 

petrophysical logs could be beneficial to enhance the 

predictive accuracy of classification models compared to 

the existing wireline logs as reported in the literature 

(Lopes and Jorge, 2017). For the classification of 

lithofacies, we have used RF, MLP, and CNN-shift. A brief 

intuition behind each algorithm and its functioning is 

provided in Appendix-A. 

For RF and MLP classifier, we chose to extract output 

that returns the probability estimates for each class label 

for a given input rather than standard majority voting 

system. In case of CNN-shift, “SoftMax” activation 

function outputs probability estimates over 0 to 1 scale 

for each class. Further, the prediction of probability for 

each feature class has been estimated, and 

quantification of facies with high confidence interval.  

The confusion matrix and other statistical assessment 

metrics can be used to evaluate the classification 

accuracy of any predictive model (Powers, 2011). Several 

evaluation scores, including precision (P), recall (R), F1-

score, and accuracy (A), were employed for model 

validation based on the confusion matrix. 

 𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
    (5) 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (6) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (7) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃×𝑅

𝑃+𝑅
                 (8) 

where TP, TN, FN, and FP refer to true positive, true 

negative, false negative, and false positive, respectively. 

For adjacent facies accuracy calculation, we have created 

an array to represent the facies adjacent to each other 

as defined in Table 1.  

RESULTS AND DISCUSSION 

Eleven input features were utilized to predict target 

variables (lithofacies) from ten wells. Filling of PE logs in 

two wells increased the number of datasets from 3232 

to 4,149. For facies classification out of 10 wells, 1 well 

was kept aside at a time to ensure robustness of blind 

testing and to generate accuracy score of the classifier 

between the predicted and actual facies labels. The 

remaining datasets were sliced into 80:10:10 

proportions as training, validation, and testing sets, 

respectively. Supervised machine learning algorithms 

were applied to the training dataset with optimum 

hyperparameters to learn the mapping function 

between input features and the target facies classes. 

We first evaluated model performance (cf. equation 5) 

using exact facies, where only predictions that match the 

true facies, are counted as correct, i.e., true positive (TP). 

However, since lithofacies are not strictly discrete and 

often display transitional characteristics, achieving 

perfect accuracy under this criterion is inherently 

difficult. To better reflect geological complexity, 

predictions were considered correct (true positives) if 

they matched either the true facies label or any of the 

geologically reasonable adjacent facies listed in Table 1. 

The metric scores considering only true facies 

predictions and those including adjacent facies 

predictions on blind data are summarized in Table 2 to 

identify the most reliable classifier. MLP and RF classifier 

algorithms show comparable metric scores, while the 

metric score of CNN-shift is lower than the two models. 

The results of the predicted facies output from the three 

models in comparison to the original facies distribution 

for the blind well testing are shown in Figure 6. Also, the 

predicted output results from the three models adjusted 

using the adjacent facies concept are shown in Figure7. 

Upon comparing Figure 6 and Figure 7, one can notice 

that the metric score has increased significantly when 

using adjacent labels for prediction, as seen from the 

metric scores in Table 2. Hence, it is inferred that any of 

the mentioned classifiers is a suitable facies classifier 
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model. For this case, MLP is selected for blind well facies 

prediction. 

Table 2: Classification metric score for true facies (Original) and including geologically reasonable neighboring facies (Adjacent) for 

different blind well testing. 

 

 

Figure 6: Gamma ray and photoelectric (PE) logs for the ALEXANDER D well in the first two tracks. Predicted facies from the MLP, 

CNN-shift, and RF models are shown alongside the true facies, with predictions made considering the true facies labels. 

In a real geological setting, boundaries between facies 

are gradational rather than sharp; hence, it is important 

to know how confident the model is in its prediction at 

every depth. Hence, the probability of the predicted 

facies plot helps to identify these ambiguous zones, 

where the model hesitates between two or more facies. 

It helps to understand the cause behind the prediction 

of the facies by the model, which may be either because 

the facies truly dominate at a particular depth or there is 

a higher probability of that facies being present at that 

depth among other facies with lower probabilities 

(Figure 8). 

It becomes significant when determining the reliability 

of predictions in transition zones or thin layers. For 

example, in Figure 8, at slightly below 3000 ft, a thin layer 

transitioning from PS to WS, captured by MLP and RF 

algorithms with varying proportions. By comparing 

multiple models, we can visually assess which model has 

higher confidence, smoother transitions, or better 

alignment with the true facies (Figure 8). 
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Figure 7: Gamma ray and PE logs for the ALEXANDER D well in the first two tracks. Predicted facies from the MLP, CNN-shift, and 

RF models are shown alongside the true facies, with predictions made considering the adjacent facies in labels.  

 

 

Figure 8: Predicted class probabilities for each facies are 

shown in tracks for the MLP, CNN-shift, and RF models, 

compared with the true facies for the ALEXANDER D well. 

 

 

Figure 9: True facies alongside original and adjacent facies 

predictions using the MLP model for blind well – ALEXANDER 

D. Predictions are shown with probability thresholds at 50% 

and 90% confidence intervals. A reduction in classified facies is 

observed at the >90% confidence level. 
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Figure 9 shows the true facies, the original MLP 

predictions, and the predictions after including adjacent 

facies information. The last two columns display the 

predictions when only probabilities greater than 0.5 and 

0.9 are considered. As the cutoff increases, more white 

spaces appear, meaning the model is less confident in 

those intervals. Mainly, the facies of Mudstone (MS), 

Wackstone (WS), and Packstone-Grainstone (PS) 

information are getting whitened as the probability 

cutoff increases, which means those facies predictions 

do not have much confidence. This highlights how using 

adjacent information improves predictions as well as 

how probability thresholds help in identifying the most 

reliable results.  

Figure 10 illustrates the performance and reliability of 

the MLP model using blind-well testing. The model was 

trained by leaving one well blind in each iteration to 

evaluate generalization. When ALEXANDER D was used 

as the blind well, the accuracy improved from 0.82 to 

0.96 after incorporating adjacent facies information. 

Similarly, for SHRIMPLIN, the accuracy increased from 

0.86 to 0.98 with the same adjustment, demonstrating 

the positive impact of contextual facies integration. 

 

Figure 10: Blind well prediction comparison between the ALEXANDER D and SHRIMPLIN wells. In the plots, intervals where 

predicted probabilities for any facies classes did not exceed a 90% confidence level are left blank, while intervals with probabilities 

higher than 90% are displayed. This representation highlights that the MLP model demonstrates good generalization performance. 

Several important observations can be made from the 

results: 

1. Accurate prediction of Marine Siltstone and Shale 

(SiSh): The model consistently identifies the SiSh 

facies with high accuracy, even for thin beds, closely 

matching the true facies distribution. 

2. Reliable detection of Phylloid-Algal Bafflestone 

(BS): Despite the limited number of BS 

samples(Figure 1), the model successfully predicts 
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very thin BS layers (e.g., ~2900–2950 ft in 

ALEXANDER D and ~2800–2850 ft and ~3000–3050 

ft in SHRIMPLIN) with probabilities exceeding 90%. 

This is particularly significant since BS represents 

potential gas-bearing facies. 

3. Confusion between Non-Marine Coarse Siltstone 

(CSiS) and SiSh: Some misclassification occurs 

where small probabilities of SiSh are assigned to 

CSiS intervals, even though the two are not 

adjacent facies. However, given that both are 

siltstone-dominated lithologies, this overlap is 

reasonable. Importantly, the model still 

distinguishes CSiS from SiSh with sufficient 

probability resolution, indicating robustness in 

handling transitional or thin-bed facies. 

4. Uncertainty in MS–WS–PS transitions: Most of the 

white intervals in the >90% probability plots 

correspond to zones dominated by Mudstone (MS), 

Wackestone (WS), and Packstone–Grainstone (PS). 

Around 3000 ft in both wells, these facies exhibit 

nearly equal probability distributions without any 

class exceeding the 90% threshold. Since these 

facies occur in adjacent transitions (MS ↔ WS ↔ PS) 

(Table 1), the model exhibits ambiguity, reflecting 

genuine geological similarity rather than random 

misclassification. 

By the addition of more input features including PE and 

bulk density logs as well as increasing number of 

training samples, substantial improvement of model’s 

prediction performance have been achieved compared 

to results from MLP and SVM algorithm reported in 

previously published works (Dubois et al., 2007; Hall, 

2016). Overall, the results confirm that the MLP model 

has captured both thick and thin facies distributions with 

high reliability, while probability thresholding provides 

insight into facies-specific uncertainties and confidence 

levels. 

CONCLUSIONS 

In this study, we demonstrated the advantages of 

capturing facies class transition by adopting 

probabilistic facies classification through the application 

of multiple machine learning algorithms. Based on 

classification metrics performance on blind test 

(accuracy of 0.82 and 0.86, and F1-score of 0.82 and 0.87 

for ALEXANDER D and SHRIMPLIN, respectively), Multi-

layer Perceptron (MLP)- an ANN algorithm 

outperformed the remaining Random Forest (RF) and 

Convolutional neural network (CNN) classifier. 

Probabilistic driven classification output in the range of 

0 to 1 scale not only resolved geologically meaningful 

transition of facies but also mapped one of the 

prominent gas-bearing facies, Phylloid-Algal Bafflestone 

(BS) in the Hugoton gas field which could be beneficial 

for subsurface modelling.  
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APPENDIX 

Random Forest (RF) 

Random Forest is an ensemble learning method that 

constructs a number of decision trees and combines 

their outputs to improve predictive performance 

(Breiman, 2001). Each tree is trained on a bootstrap 

sample (random subset) of the training data, and at 

every split, only a random subset of features is 

considered. This dual randomness, data sampling, and 

feature selection reduces variance and helps prevent 

overfitting compared to a single decision tree. 

For regression tasks, the predictions from individual 

trees are averaged to obtain the final continuous output. 

For classification tasks, each tree casts a “vote” for the 

predicted class, and the final class is chosen by majority 

voting and probability across all trees. This aggregation 

mechanism allows Random Forest to produce stable, 

generalizable, and robust predictions in both categorical 

and continuous settings, making it effective even in the 

presence of noise or highly variable data.  

Multilayer Perceptron (MLP) 

The Multilayer Perceptron is a feedforward artificial 

neural network (ANN) that models complex nonlinear 

G 
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relationships between input features and output classes 

(Rumelhart et al., 1986). It consists of an input layer, one 

or more hidden layers, and an output layer, where each 

neuron applies a weighted linear transformation 

followed by a nonlinear activation function. During 

training, the network learns hierarchical feature 

representations through backpropagation, in which 

errors are propagated backward, and weights are 

updated using gradient descent to minimize a 

predefined loss function. By stacking multiple layers, 

MLPs can capture intricate patterns in geological data, 

enabling effective lithofacies classification. 

Convolutional Neural Network with Shift padding (CNN-

shift) 

The Convolutional Neural Network with shift 

modification extends conventional CNNs to capture 

spatially correlated patterns in sequential data such as 

well logs and seismic traces (Lecun et al., 1998; Wei et 

al., 2019). CNNs operate by applying convolutional 

filters across the input to detect local features, followed 

by pooling operations that reduce dimensionality while 

preserving essential information. The “shift” mechanism 

incorporates shifted windows or neighbouring slices of 

data, enhancing the model’s ability to detect lithofacies 

transitions and stratigraphic continuity. Extracted 

features are then passed through fully connected layers 

to map them into lithofacies probability classes, making 

CNN-shift particularly effective for identifying facies 

boundaries in depth-dependent datasets. 

Since well log responses are one-dimensional arrays 

(e.g., Gamma Ray or ILD_log10), applying 2D 

convolution directly is not possible. To enable the use of 

Conv2D, the 1D log sequences must be transformed into 

a two-dimensional representation. This is achieved 

through the shift padding method, where the original log 

values are arranged into overlapping shifted sequences. 

Each subsequent row is a circularly shifted version of the 

initial 1D array, so that local depth patterns and 

neighbouring variations are spatially embedded in a 2D 

grid. This structured transformation captures both 

vertical continuity and lateral shifts within the data, 

allowing CNN filters to extract important spatial features 

from well logs that would otherwise be lost in a pure 1D 

formulation. 

SoftMax activation function is used in the output layer 

of the CNN network, which helps us with multi-class 

classification. This activation function produces a 

probability distribution across all classes (sums to 1). The 

equation of the activation function is given as  

𝜎(𝑧𝑖) =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

,    for i = 1,2,…,k        (9) 

where, 𝑧𝑖 = input score (logit) for class i, k = total number 

of classes, 𝜎(𝑧𝑖) = probability of class i. 
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Fault-bend fold in Kioto Limestone at Kibber Village, Spiti-Zanskar Basin. 
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