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ABSTRACT

Identifying and mapping of lithology or facies from inversion
of seismic reflection data often encounters severe challenges
due to overlapping elastic properties, especially data at
different sampling rates. Probabilistic interpretation of elastic
attributes derived from deterministic inversion based on
Bayesian inference, provides a framework for quantification of
the associated uncertainties in facies discrimination. In
geostatistical inversion workflows, Bayesian inference, prior
information with likelihood functions generate posterior
probability density functions (pdfs). This facilitates
experimenting with the two components of uncertainty,
namely, bias and variance. By ranking multiple equiprobable
realizations using suitable local criterion, it becomes possible
to quantitatively measure uncertainty. Real-data examples
from Gulf of Mexico, Gulf of Thailand, Malay Basin and Cooper-
Eromanga Basin, Australia have been used to illustrate the
process of uncertainty quantification in seismic reservoir
characterization using deterministic and geostatistical
inversion.
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INTRODUCTION

In the context of hydrocarbon exploration and
development, reservoir characterization refers to the
determination of physical properties, such as porosity,
permeability and water saturation, and their lateral and
vertical distribution during the life cycle of one or more
reservoirs in an oil or gas field. This process begins with
the discovery of a field and continues through its
development, production and eventual decline. A
reservoir characterization study forms a crucial part of
development of a predictive model of the subsurface
reservoir. It is built by integrating multi-disciplinary data,
often having different scales and resolutions. Ideally, a
unified model of the reservoir should reconcile all
available data - both surface and sub-surface. Surface
data typically includes seismic reflection data, while
subsurface data comprises borehole logs, core samples,
drill cuttings and formation test results. This task of
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unified model building, though appears to be simple, is
quite challenging. In practice, several reservoir models,
e.g., petro-elastic model, geo-mechanical model, static
and dynamic models etc. are built during various phases
in the lifetime of an oil/gas field to meet different
objectives.

Surface seismic data plays a crucial role in reservoir
modeling due to their dense spatial coverage and
relatively lower cost compared to drilling and subsurface
measurements. Despite being band-limited, seismic
reflection data provide valuable information about
subsurface interfaces between layers with different
elastic properties—namely P-wave velocity (Vp), S-wave
velocity (Vs), and density (p). These seismic reflection
data are transformed into subsurface layer properties
through seismic inversion which formulates the problem
as that of optimization in inverse theory. Current
industry practices involve inverting both post-stack and
pre-stack seismic data using two main types of tools,
namely, deterministic and geostatistical inversion
methods. While inversion of post-stack seismic data
yields acoustic impedance of the subsurface layers
consisting of the reservoir as well as the non-reservoir
intervals, inversion of pre-stack data or simultaneous
inversion of multiple offset/angle stacks yields the P-
impedance, S-impedance, and density of these layers. It
also enables the derivation of alternative subsurface
elastic properties such as the ratio of velocities of P-
wave and S-wave (Vp/Vs), Poisson'’s ratio (o), Lambda-
rho (Ap), Mu-rho (up). Deterministic inversion yields
single model of elastic properties with resolution limited
by the maximum frequency content of the seismic data,
geostatistical inversion provides with highly detailed
multiple realizations of the same properties. The choice
of the data, whether post-stack or pre-stack as well as
the choice of inversion tool, i.e., deterministic or
geostatistical inversion is generally determined by the
objective of the study and availability of data (Latimer et
al., 2000).

Deriving an accurate subsurface model, whether elastic,
petrophysical, or engineering, is one of key objectives of

Emails: ranjit.shaw@geosoftware.com; jimmy.ting@geosoftware.com; siewjiun.yap@geosoftware.com



mailto:ranjit.shaw@geosoftware.com
mailto:jimmy.ting@geosoftware.com
mailto:siewjiun.yap@geosoftware.com

Uncertainty quantification in seismic reservoir characterization using geostatistical inversion

seismic inversion. This process involves integration of
different data sets, e.g, measurements from wells,
seismic amplitude, structural and stratigraphic
interpretations and the depositional setup. As a result,
the inversion model typically contains many unknown
parameters, often exhibiting strong non-linear relations
with the data. Thus, it is extremely challenging to build
a single model that accurately captures all the
information required for reservoir characterization. The
limitations of available data including inaccuracies,
insufficiencies, and inherent ambiguities, compound this
challenge. The impact of such limitations on geophysical
interpretation has long been discussed in the
geophysical literature (Jackson, 1972). With multiple
models, that can predict the observed data, one can
provide a range of solutions to capture various
possibilities in real field situations. In simpler words we
can say that there is no single model which can explain
all these disparate data perfectly. This gives rise to the
notion of uncertainty.

To illustrate this, we present one real-world example
from the Gulf of Mexico, demonstrating how Bayesian
inference can be applied to quantify uncertainty in
interpretation of deterministic inversion results. Further,
we present two examples, one from Gulf of Thailand and
the other from Cooper-Eromanga Basin, Australia
covering exploration and development of oil/gas fields
to elucidate how uncertainty quantification can be
carried out using results from geostatistical inversion.

UNCERTAINTY

Uncertainty refers to the lack of surety about something,
e.g., occurrence of some event, physical phenomenon,
etc. All natural processes have some inherent
randomness, whether big or small, leading to
uncertainty in its prediction. Moreover, poor
understanding of the nature of the process,
approximations and assumptions in the model, noise in
data and experimental errors, etc. contribute
significantly to the overall uncertainty. Thus, uncertainty
may be described by its two components, namely,
variance and bias. Variance arises from some degree of
randomness in the underlying processes. It is often
called aleatory uncertainty or irreducible uncertainty in
literature. Bias, on the other hand, consists of knowledge
uncertainty such as lack of measured data,
approximation of models and assumptions made to
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simplify complex models. This form of uncertainty is
reducible if we have better quality data, sufficient data,
more accurate models, and better understanding of the
physics/mathematics of the problem and geology.
Though bias constitutes the major component of total
uncertainty, it is commonly neglected while assessing
uncertainty.

Consider the problem of estimating lithology or facies
from inversion of seismic amplitude or AVO, as an
example. Both deterministic inversion and geostatistical
inversion rely on Bayesian inference, but they differ in
how they apply this principle within their workflows. In
deterministic inversion, the inverted elastic properties
are used as input to Bayes' theorem (equation 2) to
estimate the posterior probability of expected lithology.
Thus, Bayes theorem is used posterior to deterministic
inversion to estimate probabilities of different
lithologies. However, due to limitation in resolution of
deterministic inversion results, the uncertainty in
lithology discrimination, caused by the overlap of elastic
properties, may pose challenges to map thin layers.
Geostatistical inversion, on the other hand, provides a
framework to integrate all available information from
varied sources, e.g., wells, seismic interpretation, rock
physics, geology and stratigraphy etc., giving rise to a
robust workflow for joint inversion of lithology as well as
elastic and petrophysical properties. It is interesting to
note that highly detailed subsurface information
available in the wells is tightly integrated with other
information in geostatistical inversion within a Bayesian
framework. This facilitates mapping of thin layers much
below resolution of seismic data and deterministic
inversion. Traditionally, many realizations are derived to
capture both the variance and bias components of
uncertainty. In general, the variance is captured through
different realizations from the same set of model
parameters. This can be viewed as drawing randomly
from the same property distribution. On the other hand,
bias is captured using different scenarios with different
parameters. Simplistically, one can think of considering
multiple  distributions of elastic/ petrophysical
parameters and having multiple draws from each of
these distributions to capture the bias component of
uncertainty. Finally, rankings of these multiple
realizations based on a suitable criterion, e.g., net pay
encountered in a well, estimate of reserve in a specified
area, etc. help to select realizations with specified
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probabilities. Thus, a quantitative measure of
uncertainty is captured in the process to help informed
decision making.

UNCERTAINTY QUANTIFICATION

A model of the subsurface derived from a set of
measured data is only one of several possibilities, maybe
the most likely one, given our confidence on the
process/ algorithm utilized. Interestingly, once we use
terms like ‘'most likely’, we acknowledge the presence of
uncertainty in the model. In our mind comes the idea
that variation in prediction from this model is not
unlikely and we should assess it or even better- quantify
it. Thus, providing an estimate of uncertainty becomes
as important as providing the estimate of the most likely
value so that risks associated with using the final
products are assessed properly. Risks of a process can
be identified qualitatively as well as quantitatively.
Typically, in the oil and gas industry, only high-risk
ventures are quantified! However, the scope of
uncertainty quantification is much broader, as observed
by Fournier et al. (2013). In an editorial note they
commented that "Uncertainty quantification has many
applications and is now becoming essential components
of geosciences”. They continued to add that the
methods of uncertainty quantification play an important
role in risk assessment and decision as well as policy
making.

UNCERTAINTY AND RISK ASSESSMENT

A traditional way of qualitative risk assessment is
preparation of a template that maps false positives and
false negatives along with the correct predictions,
namely, the true positive and true negative outcomes.
This is conveniently represented in the form of a matrix
called confusion matrix. The risk assessment process can
mature with past experiences and lessons learnt from
past successes and more importantly from past failures.
Thus, the experience of an individual (an expert), a team
(e.g., interpretation team) and a company (best
practices, lessons learnt, etc.) as well as continual
improvement of the practices are input for this risk
assessment/mitigation process. The objective or the
target for us is to make a template of this kind, where
our predictions are such that the prospects for false
positives and false negatives are reduced as much as
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possible. This way, we are now trying to quantify the
risks.

In quantitative risk assessment, we attempt to answer
questions like what can go wrong, how likely it can go
wrong and what are the consequences of going wrong.
As the consequences of going wrong can be
devastating, we attempt to answer the other two
questions confidently. We endeavor to clearly
understand the assumptions in the process and the
pitfalls associated in using the results to achieve a
specified objective to answer the first question. How
likely a process can go wrong is typically handled with
probability theory (Oberkampf, 2005).

UNCERTAINTY QUANTIFICATION IN DETERMINISTIC
INVERSION

Before proceeding to discuss how to quantify
uncertainty in deterministic inversion, let us briefly
review how we interpret deterministic inversion results
guantitatively. One popular method of interpretation of
deterministic inversion results is to use histogram range/
polygon based or seed based geo-body capture.

Consider the case of post-stack inversion where the
derived property is acoustic impedance. This dataset
used is from the Mississippi Canyon in the Gulf of
Mexico (Figure 1), which has few wells that have been
used to build the low frequency model and to calibrate
the inversion results. Lithology was defined from
petrophysical interpretation, identifying three primary
facies, namely, shale, pay sand, and brine sand (Figure
2). An analysis of the distribution of acoustic impedance
with lithology shows that pay sand can be discriminated
against brine sand and shale, but significant overlap of
acoustic impedance amongst these facies will introduce
uncertainty in facies discrimination over and above
those introduced by the quality of input data and
inversion. Once deterministic inversion is performed, a
traditional method of interpretation is histogram range-
based capture of geo-bodies within the target zone,
bounded by Red and Lime horizons in this example. We
can see from the histogram of acoustic impedance,
colored by lithology, that pay sand has lower acoustic
impedance than brine sands and shale (Figure 2a). Visual
inspection of the acoustic impedance histogram
suggests a threshold of ~4.75 x108 kg/m3*m/s may be
appropriate to map the pay sand with fair discrimination
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from brine sand and shale which we can see from the
impedance panel shown in Figure 2b. If we intend not to
capture any brine sand, we require revision of the
threshold to a lower value of acoustic impedance, say
430 x10% kg/m3**m/s. But as the panel in Figure 2c

exhibits, this thresholding results in the possibility of
missing out on the lateral continuity of the main pay
sand. Besides, the pay sand just below the ‘Red’ horizon
may not be captured using this lower threshold.
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Figure 1: (a) An arbitrary line from stacked seismic data from Mississippi Canyon, Gulf of Mexico, and (b) the equivalent acoustic
impedance inverted from the stacked data. Facies observed in the wells are overlaid in the seismic section, with shale exhibited in
grey, brine sand in blue, and pay sand in green. On the acoustic impedance section, the impedance log is high-cut filtered to the
maximum seismic frequency and overlaid. The main pay reservoir lies between the ‘Red’ and ‘Lime’ horizons shown in black and
yellow respectively and can be broadly characterized by low acoustic impedances.

While such methods are intuitively simple and
convenient to use, there are some limitations in practical
applications. For example, in polygon- or histogram-
based classification, two neighbouring data points on
either side of a facies boundary are assigned different
facies due to the 'hard’ classification criterion, i.e. a point
either belongs to or does not belong to a defined facies
class. This rigid approach can lead to abrupt and
potentially unrealistic transitions. On the contrary, a
probabilistic approach would assign comparable
probability values to two competing facies for such
neighbouring points, reflecting the inherent uncertainty
more accurately. As mentioned earlier, the Bayesian
inference framework, which maps prior probabilities
using available data, enables a probabilistic
interpretation of deterministic inversion results. This
facilitates a quantitative assessment of uncertainty in
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facies classification, providing a realistic understanding
of the subsurface.

BAYESIAN INFERENCE

Bayes Theorem (Bayes, 1763; Russell, 2024) deals with
hypotheses and probabilities. It can answer questions
like ‘what is the probability that hypothesis (A) is true,
given the information (B)' or it can go further to answer
questions like ‘how is the probability of an event (A) will
get modified with the results of a new experiment (B)'.
In simple mathematical terms, it can be written as,

P(BJ|A).p(a)

P(AIB) = o)

(M

The experiment or the event we are discussing here is
seismic inversion that converts seismic reflection
amplitudes to acoustic impedance over a data volume.
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Figure 2: (a) Frequency distribution (statistical) of acoustic impedance per facies measured in wells within the zone of interest. (b)
Inverted impedance section showing values lesser than the selected threshold of 4.75 x 106 kg/m? * m/s representing the histogram
range boundary shown as green vertical line. (c) same as figure (b) with acoustic impedance threshold of 4.30 x 106 kg/m3*m/s.

Any information on facies such as litho-facies or fluid
facies available before inversion is considered as ‘prior’.
For example, we can estimate the probability of facies,
P(Facies) from measurements in the wells and
petrophysical interpretation that has been carried out
before seismic inversion. Also, we can determine the
distribution of acoustic impedance (Al) for a given facies
from measurements of sonic and density logs in the
interval of interest. Using these two pieces of
information, we can write equation (1) as (Shaw and Sen,
2024),

p(Al|Facies).p(Facies)

P(Facies|Al) = PGl

-(2)
which facilitates estimation of the probability of a given

facies at a subsurface point using the value of Al from
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inversion. This helps us to know the most likely facies
and probability of its occurrence! The underlying
concepts are explained pictorially in Figure 3.

In the Mississippi Canyon example cited above, the
primary reservoir lies between ‘Red’ and ‘Lime’ horizons.
Based on measurements from a few wells in this block,
the estimated probabilities for shale, pay sand and wet
sands being 70%, 22% and 8% respectively. The acoustic
impedance distributions for these facies can be
reasonably modeled using normal and log normal
distributions. Acoustic impedance data from wells
filtered to seismic frequency, are overlaid on the
acoustic impedance section as shown in Figure 1. There
is a strong correlation between the measured and
inverted values.
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Figure 3: Pictorial illustration of Bayes' theorem representing the interrelation of prior and posterior probabilities. The dotted vertical
line represents the event/experiment that created new data/information. (a) The prior probability of facies estimated from wells, (b)

the likelihood function-distribution of acoustic impedance per facies.

By applying Bayes' theorem, we can estimate both the
most probable facies and their associated probabilities.
As shown in Figure 4, there is a good agreement
between the measured and predicted facies at Well 3
and Well 3ST. However, predictions at Well 1, where
several thin sand layers are present, are fewer. The
equivalent panel showing the probability of pay sand is
shown in Figure 4b. A stratal slice through the main
reservoir highlights areas associated with pay sand
probability, which are consistent with the structure and
depositional framework of the region (Mayall et al,
1992; Latimer et al., 2000).

With the above approach our confidence in identifying
potential pay zones and understanding the associated
uncertainty is enhanced. Two important points to note
here are that uncertainty quantification is carried out
after seismic inversion, and we are talking about
uncertainty in interpretation of the inverted acoustic
impedance in terms of lithology; not the inversion
process itself.

UNCERTAINTY QUANTIFICATION IN
GEOSTATISTICAL INVERSION

In contrast to deterministic inversion workflow,
geostatistical  inversion  incorporates  uncertainty
quantification, as Bayesian inference forms its integral
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component. The other two components of geostatistical
inversion are i) geostatistical modeling, and ii) sampling
of posterior probability density function (pdf). In view of
complexity of the multi-dimensional posterior pdf,
advanced sampling methods, e.g. Markov Chain Monte
Carlo (MCMC() are used to build many equiprobable
realizations. With a fundamental insight from
geostatistical modeling and inversion, it can be said that
no unique solution exists for a given set of data, prior
knowledge, and assumptions. In fact, a range of values
of different parameters can be consistent with all the
observations. Typically, several scenarios are created by
applying small perturbation (10%-20%) to the sensitive
parameters, depicting various possibilities, e.g., lithology
proportion, variogram type and ranges, signal-to-noise
ratio of seismic data, etc. The resulting realizations
generated from such multiple scenarios capture the
‘bias’ component of the uncertainty. The variance
component is captured by selecting several random
seeds for each scenario.

As multiple realizations of the subsurface properties are
generated through geostatistical inversion, the quality
control (QC) and interpretation of the results are also
carried out in terms of statistical measures. For
continuous properties, such as elastic, petrophysical or
reservoir properties, besides the mean of a large number



Uncertainty quantification in seismic reservoir characterization using geostatistical inversion

Facies

Brine sand

Pay Sand

Time (s)

Shale

(b)

Time (s)

Probability

Figure 4: An arbitrary line section exhibiting the (a) most probable facies, and (b) probability of pay sand derived from deterministic
inversion results. (c) Map representing a stratigraphic slice of pay sand probability through the main reservoir.

of realizations, maximum/ minimum or range as well as
standard deviations provide good measures for
characterizing the uncertainty. The mean of multiple
realizations loses the fine details and approaches
towards deterministic inversion results- quite often used
as QC of geostatistical inversion results. Range
(maximum-minimum) and standard deviation represent
the associated uncertainty. Consider a scenario with two
facies, namely, shale and sand, and a geostatistical
inversion is run yielding 100 realizations. If a particular
voxel contains sand in 80 out of 100, then the most
probable facies is sand with frequency of occurrence
80%. At another voxel, if sand appears 52 times and it is
48 times for shale, then sand remains the most probable
facies, but only with 52% frequency. Thus, our
confidence in predicting sand at the first location is
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much higher than that at the second location. Therefore,
combining the most probable lithology with its
frequency of occurrence provides a more stable
guantitative measure of uncertainty in lithofacies
identification and distribution.

Further, as all realizations from geostatistical inversion
are considered equally probable, specific criterion can
be applied to evaluate and rank them on localized
attributes of interest. These criteria may include, for
example, net pay thickness in a vertical interval (zone) at
a proposed well location, or the estimated oil/ gas
reserves within a reservoir volume bounded by selected
top and bottom horizons. By ranking the realizations
based on such a criterion, we can derive statistical
percentiles, typically P10, P50 and P90, for quantifying
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uncertainty. In this context, P50 means the probability
that the expected value would be greater (or lesser) than
50%. Similarly, P10 and P90 denote the probability of the
predicted value to be lesser than 10% and 90% of the
population respectively. Note that there is no
equivalence of such probability values in deterministic
inversion results. P10-P50-P90 values taken together
quantify the associated uncertainty in a much clearer
way. A word of caution here is on the usage of the
terminology- the terms P10 and P90 have been used
differently by different disciplines. Depending upon the
ordering of the ranking variable in defining its
cumulative distribution function, viz. increasing or
decreasing order of values, the P10 and P90 values can
swap. However, for a specific ranking criterion the P50
value of the population remains the same irrespective of
the scheme of ordering, though it may be different for
different ranking criteria.

FIELD EXAMPLES
Bongkot Field, Gulf of Thailand

An example of uncertainty quantification is presented
using the results of geostatistical inversion of pre-stack
seismic data over the Bongkot field, Gulf of Thailand,
North Malay Basin, which is the biggest gas and
condensate producing field of Thailand (Promrak et al.,
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2016). In this study, petrophysical properties have been
co-simulated using their statistical relationship with
elastic properties and net pay was subsequently
calculated at 15 blind well locations. The results were
compared with the pre-drill prognosis obtained through
conventional analysis (Figure 5). To evaluate the
uncertainty, two parameters were defined:

i) pay prediction precision, defined as how
often the actual net pay lies within
prediction range of P10-P90

ii) pay estimation uncertainty, defined as the
difference in percentage between predicted
P50 and actual net pay

It was found that geostatistical inversion results
improved the pay prediction precision from 40% to 83%
compared to pre-drilled prognosis. On the other hand,
pay estimation uncertainty reduced from 72% to 43%
suggesting that, geostatistical inversion workflow better
suited to delineate the pay sands in such thin-bedded
and randomly distributed sands in the area, not only in
terms of mapping but also in characterizing the
uncertainty in pay estimation.

(b)

| SN
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Figure 5: Comparison of conventional pre-drill prognosis (red) and geostatistical inversion (blue). (a) Net pay estimation precision,
and (b) uncertainty in pay. (Modified after Promrak et al. 2016). Compared with conventional pre-drill prognosis, geostatistical
inversion approach reduces pay estimation uncertainty from 72% to 43% and enhances prediction precision from 40% to 83% at

blind wells.
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Figure 6: Quantitative estimation of uncertainty through ranking. Net pay at 9 vertical well locations were estimated from 81
realizations of geostatistical inversion and ranked. Actual pay encountered in these wells are found to lie close to P50 values (After

Mannini et al,, 2023).
Growler Field, Cooper-Eromanga Basin

Another example demonstrating uncertainty
quantification comes from geostatistical inversion of
multi-stack seismic data where uncertainty primarily
arises from (i) substantial overlap of elastic properties,
namely, P-impedance and Vp/Vs between the reservoir
facies, (ii) presence of carbonaceous shale, which can
lead to misinterpretation of amplitude variation with
offset (AVO), and (iii) noisy seismic data that mask weak
AVO anomalies (Mannini et al, 2023). Geostatistical
inversion was carried out after proper conditioning of
both well logs and seismic data. Three facies, namely,
reservoir, non-reservoir and carbonaceous shale were
mapped. Geostatistical inversion delineates point bars
with medium range porosity in the target interval of the
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core area of the field surrounded by low porosity flood
plains. Geostatistical inversion was run for 3 different
values, viz. low, mid and high of 3 most sensitive
parameters, namely sand proportion, vertical and lateral
variogram ranges resulting in 33 (=27) scenarios. For
each scenario, 3 realizations were created using random
seeds, thus generating 81 realizations, in total. Gross
bulk volume of the sand in the core area was used as the
criterion to rank these realizations to capture both bias
and variance components of uncertainty. Figure 6 shows
the results from a ranking process at 9 vertical wells in
the core area, which were kept completely blind in the
geostatistical inversion process. P10, P50 and P90 values
of estimated sand thickness are shown in the figure

68
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alongside the corresponding thicknesses measured at
the respective wells to represent the efficacy of
uncertainty quantification. Wells highlighted with green
colour indicate that sand thickness encountered in these
wells falls within P30-P70 ranges and can be considered
as good prediction. Sand thickness lying beyond this
range but within P10-P30 or P70-P90 values are
coloured in orange, indicative of moderate quality of
prediction. The red colour indicates poor prediction of
sand thickness. It is encouraging to note that actual sand
thickness in 5 out of 9 blind wells lie within P30-P70

ranges while the other 4 wells lie within P70-P90 values.
In none of these 9 wells, the actual sand thickness lied
below P10 or above P90 values. A radar plot (spider plot)
of these results (Figure 7) exhibits that P50 values
represented by the green curve (P50) follows closely
with the black curve- the actual values. These results

convincingly show that advanced geostatistical
inversion workflow can be effectively used for
quantifying  uncertainty in  seismic  reservoir

characterization.

Sand Thickness

w— U | P10

P50 P90

11 14

6

Figure 7: Radar plot (spider plot) of the results shown in Figure 6. Numbers at the circumference represent blind wells. The dotted
contours represent the net pay thickness in time (in ms) increasing radially outward. The figure clearly shows that P50 value of the
net pay predicted for all 9 wells are close to the corresponding actual values.

CONCLUSIONS

Principle of Bayesian inference provides a framework for
quantification of uncertainty in interpretation of both
deterministic and geostatistical inversion results. This
approach helps in risk assessment and promotes
informed decision-making in subsurface evaluation. The
cited example from Gulf of Mexico illustrates how
uncertainty in the delineation and mapping of pay sands
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can be quantitatively estimated by deriving the most
probable litho-facies and probability of pay sands from
deterministic inversion results. Further, an analysis of
geostatistical inversion results from Bongkot field, Gulf
of Thailand established the improvement in pay
uncertainty and pay prediction accuracy compared to
traditional  prognosis  tools, which could be
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quantitatively assessed. Finally, the reservoir sand
thickness estimated from 81 equiprobable realizations
from geostatistical inversion at 9 blind well locations
from the Growler field, Cooper-Eromanga Basin showed
that the P50 value turns out to be close to the actual
value encountered at the respective wells.
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