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ABSTRACT 

Identifying and mapping of lithology or facies from inversion 

of seismic reflection data often encounters severe challenges 

due to overlapping elastic properties, especially data at 

different sampling rates. Probabilistic interpretation of elastic 

attributes derived from deterministic inversion based on 

Bayesian inference, provides a framework for quantification of 

the associated uncertainties in facies discrimination. In 

geostatistical inversion workflows, Bayesian inference, prior 

information with likelihood functions generate posterior 

probability density functions (pdfs). This facilitates 

experimenting with the two components of uncertainty, 

namely, bias and variance. By ranking multiple equiprobable 

realizations using suitable local criterion, it becomes possible 

to quantitatively measure uncertainty. Real-data examples 

from Gulf of Mexico, Gulf of Thailand, Malay Basin and Cooper-

Eromanga Basin, Australia have been used to illustrate the 

process of uncertainty quantification in seismic reservoir 

characterization using deterministic and geostatistical 

inversion.     
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INTRODUCTION 

In the context of hydrocarbon exploration and 

development, reservoir characterization refers to the 

determination of physical properties, such as porosity, 

permeability and water saturation, and their lateral and 

vertical distribution during the life cycle of one or more 

reservoirs in an oil or gas field. This process begins with 

the discovery of a field and continues through its 

development, production and eventual decline. A 

reservoir characterization study forms a crucial part of 

development of a predictive model of the subsurface 

reservoir. It is built by integrating multi-disciplinary data, 

often having different scales and resolutions. Ideally, a 

unified model of the reservoir should reconcile all 

available data - both surface and sub-surface. Surface 

data typically includes seismic reflection data, while 

subsurface data comprises borehole logs, core samples, 

drill cuttings and formation test results.   This task of 

unified model building, though appears to be simple, is 

quite challenging. In practice, several reservoir models, 

e.g., petro-elastic model, geo-mechanical model, static 

and dynamic models etc. are built during various phases 

in the lifetime of an oil/gas field to meet different 

objectives.  

Surface seismic data plays a crucial role in reservoir 

modeling due to their dense spatial coverage and 

relatively lower cost compared to drilling and subsurface 

measurements. Despite being band-limited, seismic 

reflection data provide valuable information about 

subsurface interfaces between layers with different 

elastic properties—namely P-wave velocity (VP), S-wave 

velocity (VS), and density (ρ). These seismic reflection 

data are transformed into subsurface layer properties 

through seismic inversion which formulates the problem 

as that of optimization in inverse theory. Current 

industry practices involve inverting both post-stack and 

pre-stack seismic data using two main types of tools, 

namely, deterministic and geostatistical inversion 

methods. While inversion of post-stack seismic data 

yields acoustic impedance of the subsurface layers 

consisting of the reservoir as well as the non-reservoir 

intervals, inversion of pre-stack data or simultaneous 

inversion of multiple offset/angle stacks yields the P-

impedance, S-impedance, and density of these layers. It 

also enables the derivation of alternative subsurface 

elastic properties such as the ratio of velocities of P-

wave and S-wave (VP/VS), Poisson’s ratio (σ), Lambda-

rho (λρ), Mu-rho (μρ).   Deterministic inversion yields 

single model of elastic properties with resolution limited 

by the maximum frequency content of the seismic data, 

geostatistical inversion provides with highly detailed 

multiple realizations of the same properties. The choice 

of the data, whether post-stack or pre-stack as well as 

the choice of inversion tool, i.e., deterministic or 

geostatistical inversion is generally determined by the 

objective of the study and availability of data (Latimer et 

al., 2000).  

Deriving an accurate subsurface model, whether elastic, 

petrophysical, or engineering, is one of key objectives of 
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seismic inversion. This process involves integration of 

different data sets, e.g., measurements from wells, 

seismic amplitude, structural and stratigraphic 

interpretations and the depositional setup. As a result, 

the inversion model typically contains many unknown 

parameters, often exhibiting strong non-linear relations 

with the data. Thus, it is extremely challenging to build 

a single model that accurately captures all the 

information required for reservoir characterization. The 

limitations of available data including inaccuracies, 

insufficiencies, and inherent ambiguities, compound this 

challenge. The impact of such limitations on geophysical 

interpretation has long been discussed in the 

geophysical literature (Jackson, 1972). With multiple 

models, that can predict the observed data, one can 

provide a range of solutions to capture various 

possibilities in real field situations. In simpler words we 

can say that there is no single model which can explain 

all these disparate data perfectly. This gives rise to the 

notion of uncertainty. 

To illustrate this, we present one real-world example 

from the Gulf of Mexico, demonstrating how Bayesian 

inference can be applied to quantify uncertainty in 

interpretation of deterministic inversion results. Further, 

we present two examples, one from Gulf of Thailand and 

the other from Cooper-Eromanga Basin, Australia 

covering exploration and development of oil/gas fields 

to elucidate how uncertainty quantification can be 

carried out using results from geostatistical inversion.     

UNCERTAINTY  

Uncertainty refers to the lack of surety about something, 

e.g., occurrence of some event, physical phenomenon, 

etc. All natural processes have some inherent 

randomness, whether big or small, leading to 

uncertainty in its prediction. Moreover, poor 

understanding of the nature of the process, 

approximations and assumptions in the model, noise in 

data and experimental errors, etc. contribute 

significantly to the overall uncertainty. Thus, uncertainty 

may be described by its two components, namely, 

variance and bias. Variance arises from some degree of 

randomness in the underlying processes.  It is often 

called aleatory uncertainty or irreducible uncertainty in 

literature. Bias, on the other hand, consists of knowledge 

uncertainty such as lack of measured data, 

approximation of models and assumptions made to 

simplify complex models. This form of uncertainty is 

reducible if we have better quality data, sufficient data, 

more accurate models, and better understanding of the 

physics/mathematics of the problem and geology. 

Though bias constitutes the major component of total 

uncertainty, it is commonly neglected while assessing 

uncertainty.  

Consider the problem of estimating lithology or facies 

from inversion of seismic amplitude or AVO, as an 

example. Both deterministic inversion and geostatistical 

inversion rely on Bayesian inference, but they differ in 

how they apply this principle within their workflows. In 

deterministic inversion, the inverted elastic properties 

are used as input to Bayes’ theorem (equation 2) to 

estimate the posterior probability of expected lithology. 

Thus, Bayes theorem is used posterior to deterministic 

inversion to estimate probabilities of different 

lithologies. However, due to limitation in resolution of 

deterministic inversion results, the uncertainty in 

lithology discrimination, caused by the overlap of elastic 

properties, may pose challenges to map thin layers. 

Geostatistical inversion, on the other hand, provides a 

framework to integrate all available information from 

varied sources, e.g., wells, seismic interpretation, rock 

physics, geology and stratigraphy etc., giving rise to a 

robust workflow for joint inversion of lithology as well as 

elastic and petrophysical properties. It is interesting to 

note that highly detailed subsurface information 

available in the wells is tightly integrated with other 

information in geostatistical inversion within a Bayesian 

framework. This facilitates mapping of thin layers much 

below resolution of seismic data and deterministic 

inversion. Traditionally, many realizations are derived to 

capture both the variance and bias components of 

uncertainty. In general, the variance is captured through 

different realizations from the same set of model 

parameters. This can be viewed as drawing randomly 

from the same property distribution. On the other hand, 

bias is captured using different scenarios with different 

parameters. Simplistically, one can think of considering 

multiple distributions of elastic/ petrophysical 

parameters and having multiple draws from each of 

these distributions to capture the bias component of 

uncertainty. Finally, rankings of these multiple 

realizations based on a suitable criterion, e.g., net pay 

encountered in a well, estimate of reserve in a specified 

area, etc. help to select realizations with specified 
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probabilities. Thus, a quantitative measure of 

uncertainty is captured in the process to help informed 

decision making.  

UNCERTAINTY QUANTIFICATION  

A model of the subsurface derived from a set of 

measured data is only one of several possibilities, maybe 

the most likely one, given our confidence on the 

process/ algorithm utilized. Interestingly, once we use 

terms like ‘most likely’, we acknowledge the presence of 

uncertainty in the model. In our mind comes the idea 

that variation in prediction from this model is not 

unlikely and we should assess it or even better- quantify 

it. Thus, providing an estimate of uncertainty becomes 

as important as providing the estimate of the most likely 

value so that risks associated with using the final 

products are assessed properly. Risks of a process can 

be identified qualitatively as well as quantitatively. 

Typically, in the oil and gas industry, only high-risk 

ventures are quantified! However, the scope of 

uncertainty quantification is much broader, as observed 

by Fournier et al. (2013). In an editorial note they 

commented that “Uncertainty quantification has many 

applications and is now becoming essential components 

of geosciences”. They continued to add that the 

methods of uncertainty quantification play an important 

role in risk assessment and decision as well as policy 

making.  

UNCERTAINTY AND RISK ASSESSMENT 

A traditional way of qualitative risk assessment is 

preparation of a template that maps false positives and 

false negatives along with the correct predictions, 

namely, the true positive and true negative outcomes. 

This is conveniently represented in the form of a matrix 

called confusion matrix. The risk assessment process can 

mature with past experiences and lessons learnt from 

past successes and more importantly from past failures. 

Thus, the experience of an individual (an expert), a team 

(e.g., interpretation team) and a company (best 

practices, lessons learnt, etc.) as well as continual 

improvement of the practices are input for this risk 

assessment/mitigation process. The objective or the 

target for us is to make a template of this kind, where 

our predictions are such that the prospects for false 

positives and false negatives are reduced as much as 

possible. This way, we are now trying to quantify the 

risks. 

In quantitative risk assessment, we attempt to answer 

questions like what can go wrong, how likely it can go 

wrong and what are the consequences of going wrong. 

As the consequences of going wrong can be 

devastating, we attempt to answer the other two 

questions confidently. We endeavor to clearly 

understand the assumptions in the process and the 

pitfalls associated in using the results to achieve a 

specified objective to answer the first question.  How 

likely a process can go wrong is typically handled with 

probability theory (Oberkampf, 2005). 

UNCERTAINTY QUANTIFICATION IN DETERMINISTIC 

INVERSION 

Before proceeding to discuss how to quantify 

uncertainty in deterministic inversion, let us briefly 

review how we interpret deterministic inversion results 

quantitatively. One popular method of interpretation of 

deterministic inversion results is to use histogram range/ 

polygon based or seed based geo-body capture.  

Consider the case of post-stack inversion where the 

derived property is acoustic impedance. This dataset 

used is from the Mississippi Canyon in the Gulf of 

Mexico (Figure 1), which has few wells that have been 

used to build the low frequency model and to calibrate 

the inversion results. Lithology was defined from 

petrophysical interpretation, identifying three primary 

facies, namely, shale, pay sand, and brine sand (Figure 

2). An analysis of the distribution of acoustic impedance 

with lithology shows that pay sand can be discriminated 

against brine sand and shale, but significant overlap of 

acoustic impedance amongst these facies will introduce 

uncertainty in facies discrimination over and above 

those introduced by the quality of input data and 

inversion. Once deterministic inversion is performed, a 

traditional method of interpretation is histogram range-

based capture of geo-bodies within the target zone, 

bounded by Red and Lime horizons in this example. We 

can see from the histogram of acoustic impedance, 

colored by lithology, that pay sand has lower acoustic 

impedance than brine sands and shale (Figure 2a). Visual 

inspection of the acoustic impedance histogram 

suggests a threshold of ~4.75 x106 kg/m3*m/s may be 

appropriate to map the pay sand with fair discrimination 
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from brine sand and shale which we can see from the 

impedance panel shown in Figure 2b. If we intend not to 

capture any brine sand, we require revision of the 

threshold to a lower value of acoustic impedance, say 

4.30 x106 kg/m3*m/s. But as the panel in Figure 2c 

exhibits, this thresholding results in the possibility of 

missing out on the lateral continuity of the main pay 

sand.  Besides, the pay sand just below the ‘Red’ horizon 

may not be captured using this lower threshold.

  

Figure 1: (a) An arbitrary line from stacked seismic data from Mississippi Canyon, Gulf of Mexico, and (b) the equivalent acoustic 

impedance inverted from the stacked data. Facies observed in the wells are overlaid in the seismic section, with shale exhibited in 

grey, brine sand in blue, and pay sand in green. On the acoustic impedance section, the impedance log is high-cut filtered to the 

maximum seismic frequency and overlaid. The main pay reservoir lies between the ‘Red’ and ‘Lime’ horizons shown in black and 

yellow respectively and can be broadly characterized by low acoustic impedances.   

  

While such methods are intuitively simple and 

convenient to use, there are some limitations in practical 

applications. For example, in polygon- or histogram-

based classification, two neighbouring data points on 

either side of a facies boundary are assigned different 

facies due to the ‘hard’ classification criterion, i.e. a point 

either belongs to or does not belong to a defined facies 

class. This rigid approach can lead to abrupt and 

potentially unrealistic transitions. On the contrary, a 

probabilistic approach would assign comparable 

probability values to two competing facies for such 

neighbouring points, reflecting the inherent uncertainty 

more accurately. As mentioned earlier, the Bayesian 

inference framework, which maps prior probabilities 

using available data, enables a probabilistic 

interpretation of deterministic inversion results. This 

facilitates a quantitative assessment of uncertainty in 

facies classification, providing a realistic understanding 

of the subsurface.  

BAYESIAN INFERENCE 

Bayes Theorem (Bayes, 1763; Russell, 2024) deals with 

hypotheses and probabilities. It can answer questions 

like ‘what is the probability that hypothesis (A) is true, 

given the information (B)’ or it can go further to answer 

questions like ‘how is the probability of an event (A) will 

get modified with the results of a new experiment (B)’. 

In simple mathematical terms, it can be written as, 

P(A|B) =
P(B|A).P(A)

P(B)
     … (1) 

The experiment or the event we are discussing here is 

seismic inversion that converts seismic reflection 

amplitudes to acoustic impedance over a data volume. 
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Figure 2: (a) Frequency distribution (statistical) of acoustic impedance per facies measured in wells within the zone of interest. (b) 

Inverted impedance section showing values lesser than the selected threshold of 4.75 x 106  kg/m3 * m/s representing the histogram 

range boundary shown as green vertical line. (c) same as figure (b) with acoustic impedance threshold of 4.30 x 106 kg/m3*m/s. 

Any information on facies such as litho-facies or fluid 

facies available before inversion is considered as ‘prior’. 

For example, we can estimate the probability of facies, 

P(Facies) from measurements in the wells and 

petrophysical interpretation that has been carried out 

before seismic inversion. Also, we can determine the 

distribution of acoustic impedance (AI) for a given facies 

from measurements of sonic and density logs in the 

interval of interest. Using these two pieces of 

information, we can write equation (1) as (Shaw and Sen, 

2024), 

P(Facies|AI) =
P(AI|Facies).P(Facies)

P(AI)
   …(2) 

which facilitates estimation of the probability of a given 

facies at a subsurface point using the value of AI from 

inversion. This helps us to know the most likely facies 

and probability of its occurrence!  The underlying 

concepts are explained pictorially in Figure 3. 

In the Mississippi Canyon example cited above, the 

primary reservoir lies between ‘Red’ and ‘Lime’ horizons. 

Based on measurements from a few wells in this block, 

the estimated probabilities for shale, pay sand and wet 

sands being 70%, 22% and 8% respectively. The acoustic 

impedance distributions for these facies can be 

reasonably modeled using normal and log normal 

distributions. Acoustic impedance data from wells 

filtered to seismic frequency, are overlaid on the 

acoustic impedance section as shown in Figure 1. There 

is a strong correlation between the measured and 

inverted values.  
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Figure 3: Pictorial illustration of Bayes’ theorem representing the interrelation of prior and posterior probabilities. The dotted vertical 

line represents the event/experiment that created new data/information. (a) The prior probability of facies estimated from wells, (b) 

the likelihood function-distribution of acoustic impedance per facies. 

By applying Bayes’ theorem, we can estimate both the 

most probable facies and their associated probabilities. 

As shown in Figure 4, there is a good agreement 

between the measured and predicted facies at Well 3 

and Well 3ST. However, predictions at Well 1, where 

several thin sand layers are present, are fewer. The 

equivalent panel showing the probability of pay sand is 

shown in Figure 4b. A stratal slice through the main 

reservoir highlights areas associated with pay sand 

probability, which are consistent with the structure and 

depositional framework of the region (Mayall et al., 

1992; Latimer et al., 2000).  

With the above approach our confidence in identifying 

potential pay zones and understanding the associated 

uncertainty is enhanced. Two important points to note 

here are that uncertainty quantification is carried out 

after seismic inversion, and we are talking about 

uncertainty in interpretation of the inverted acoustic 

impedance in terms of lithology; not the inversion 

process itself. 

UNCERTAINTY QUANTIFICATION IN 

GEOSTATISTICAL INVERSION 

In contrast to deterministic inversion workflow, 

geostatistical inversion incorporates uncertainty 

quantification, as Bayesian inference forms its integral 

component. The other two components of geostatistical 

inversion are i) geostatistical modeling, and ii) sampling 

of posterior probability density function (pdf). In view of 

complexity of the multi-dimensional posterior pdf, 

advanced sampling methods, e.g. Markov Chain Monte 

Carlo (MCMC) are used to build many equiprobable 

realizations. With a fundamental insight from 

geostatistical modeling and inversion, it can be said that 

no unique solution exists for a given set of data, prior 

knowledge, and assumptions. In fact, a range of values 

of different parameters can be consistent with all the 

observations. Typically, several scenarios are created by 

applying small perturbation (10%-20%) to the sensitive 

parameters, depicting various possibilities, e.g., lithology 

proportion, variogram type and ranges, signal-to-noise 

ratio of seismic data, etc. The resulting realizations 

generated from such multiple scenarios capture the 

‘bias’ component of the uncertainty. The variance 

component is captured by selecting several random 

seeds for each scenario.  

As multiple realizations of the subsurface properties are 

generated through geostatistical inversion, the quality 

control (QC) and interpretation of the results are also 

carried out in terms of statistical measures. For 

continuous properties, such as elastic, petrophysical or 

reservoir properties, besides the mean of a large number 
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Figure 4: An arbitrary line section exhibiting the (a) most probable facies, and (b) probability of pay sand derived from deterministic 

inversion results. (c) Map representing a stratigraphic slice of pay sand probability through the main reservoir. 

of realizations, maximum/ minimum or range as well as 

standard deviations provide good measures for 

characterizing the uncertainty. The mean of multiple 

realizations loses the fine details and approaches 

towards deterministic inversion results- quite often used 

as QC of geostatistical inversion results. Range 

(maximum-minimum) and standard deviation represent 

the associated uncertainty. Consider a scenario with two 

facies, namely, shale and sand, and a geostatistical 

inversion is run yielding 100 realizations. If a particular 

voxel contains sand in 80 out of 100, then the most 

probable facies is sand with frequency of occurrence 

80%. At another voxel, if sand appears 52 times and it is 

48 times for shale, then sand remains the most probable 

facies, but only with 52% frequency. Thus, our 

confidence in predicting sand at the first location is 

much higher than that at the second location. Therefore, 

combining the most probable lithology with its 

frequency of occurrence provides a more stable 

quantitative measure of uncertainty in lithofacies 

identification and distribution. 

Further, as all realizations from geostatistical inversion 

are considered equally probable, specific criterion can 

be applied to evaluate and rank them on localized 

attributes of interest. These criteria may include, for 

example, net pay thickness in a vertical interval (zone) at 

a proposed well location, or the estimated oil/ gas 

reserves within a reservoir volume bounded by selected 

top and bottom horizons. By ranking the realizations 

based on such a criterion, we can derive statistical 

percentiles, typically P10, P50 and P90, for quantifying 
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uncertainty. In this context, P50 means the probability 

that the expected value would be greater (or lesser) than 

50%. Similarly, P10 and P90 denote the probability of the 

predicted value to be lesser than 10% and 90% of the 

population respectively. Note that there is no 

equivalence of such probability values in deterministic 

inversion results.  P10-P50-P90 values taken together 

quantify the associated uncertainty in a much clearer 

way. A word of caution here is on the usage of the 

terminology- the terms P10 and P90 have been used 

differently by different disciplines. Depending upon the 

ordering of the ranking variable in defining its 

cumulative distribution function, viz. increasing or 

decreasing order of values, the P10 and P90 values can 

swap. However, for a specific ranking criterion the P50 

value of the population remains the same irrespective of 

the scheme of ordering, though it may be different for 

different ranking criteria. 

FIELD EXAMPLES 

Bongkot Field, Gulf of Thailand 

An example of uncertainty quantification is presented 

using the results of geostatistical inversion of pre-stack 

seismic data over the Bongkot field, Gulf of Thailand, 

North Malay Basin, which is the biggest gas and 

condensate producing field of Thailand (Promrak et al., 

2016). In this study, petrophysical properties have been 

co-simulated using their statistical relationship with 

elastic properties and net pay was subsequently 

calculated at 15 blind well locations. The results were 

compared with the pre-drill prognosis obtained through 

conventional analysis (Figure 5). To evaluate the 

uncertainty, two parameters were defined:  

i) pay prediction precision, defined as how 

often the actual net pay lies within 

prediction range of P10-P90 

ii) pay estimation uncertainty, defined as the 

difference in percentage between predicted 

P50 and actual net pay  

It was found that geostatistical inversion results 

improved the pay prediction precision from 40% to 83% 

compared to pre-drilled prognosis. On the other hand, 

pay estimation uncertainty reduced from 72% to 43% 

suggesting that, geostatistical inversion workflow better 

suited to delineate the pay sands in such thin-bedded 

and randomly distributed sands in the area, not only in 

terms of mapping but also in characterizing the 

uncertainty in pay estimation.  

 

 

 

 

Figure 5: Comparison of conventional pre-drill prognosis (red) and geostatistical inversion (blue). (a) Net pay estimation precision, 

and (b) uncertainty in pay. (Modified after Promrak et al. 2016). Compared with conventional pre-drill prognosis, geostatistical 

inversion approach reduces pay estimation uncertainty from 72% to 43% and enhances prediction precision from 40% to 83% at 

blind wells.  
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Figure 6: Quantitative estimation of uncertainty through ranking. Net pay at 9 vertical well locations were estimated from 81 

realizations of geostatistical inversion and ranked. Actual pay encountered in these wells are found to lie close to P50 values (After 

Mannini et al., 2023).   

Growler Field, Cooper-Eromanga Basin  

Another example demonstrating uncertainty 

quantification comes from geostatistical inversion of 

multi-stack seismic data where uncertainty primarily 

arises from (i) substantial overlap of elastic properties, 

namely, P-impedance and VP/VS between the reservoir 

facies, (ii) presence of carbonaceous shale, which can 

lead to misinterpretation of amplitude variation with 

offset (AVO), and (iii) noisy seismic data that mask weak 

AVO anomalies (Mannini et al., 2023). Geostatistical 

inversion was carried out after proper conditioning of 

both well logs and seismic data. Three facies, namely, 

reservoir, non-reservoir and carbonaceous shale were 

mapped. Geostatistical inversion delineates point bars 

with medium range porosity in the target interval of the 

core area of the field surrounded by low porosity flood 

plains. Geostatistical inversion was run for 3 different 

values, viz. low, mid and high of 3 most sensitive 

parameters, namely sand proportion, vertical and lateral 

variogram ranges resulting in 33 (=27) scenarios. For 

each scenario, 3 realizations were created using random 

seeds, thus generating 81 realizations, in total.  Gross 

bulk volume of the sand in the core area was used as the 

criterion to rank these realizations to capture both bias 

and variance components of uncertainty. Figure 6 shows 

the results from a ranking process at 9 vertical wells in 

the core area, which were kept completely blind in the 

geostatistical inversion process. P10, P50 and P90 values 

of estimated sand thickness are shown in the figure 
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alongside the corresponding thicknesses measured at 

the respective wells to represent the efficacy of 

uncertainty quantification. Wells highlighted with green 

colour indicate that sand thickness encountered in these 

wells falls within P30-P70 ranges and can be considered 

as good prediction. Sand thickness lying beyond this 

range but within P10-P30 or P70-P90 values are 

coloured in orange, indicative of moderate quality of 

prediction. The red colour indicates poor prediction of 

sand thickness. It is encouraging to note that actual sand 

thickness in 5 out of 9 blind wells lie within P30-P70 

ranges while the other 4 wells lie within P70-P90 values. 

In none of these 9 wells, the actual sand thickness lied 

below P10 or above P90 values. A radar plot (spider plot) 

of these results (Figure 7) exhibits that P50 values 

represented by the green curve (P50) follows closely 

with the black curve- the actual values. These results 

convincingly show that advanced geostatistical 

inversion workflow can be effectively used for 

quantifying uncertainty in seismic reservoir 

characterization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Radar plot (spider plot) of the results shown in Figure 6. Numbers at the circumference represent blind wells. The dotted 

contours represent the net pay thickness in time (in ms) increasing radially outward. The figure clearly shows that P50 value of the 

net pay predicted for all 9 wells are close to the corresponding actual values.  

CONCLUSIONS 

Principle of Bayesian inference provides a framework for 

quantification of uncertainty in interpretation of both 

deterministic and geostatistical inversion results. This 

approach helps in risk assessment and promotes 

informed decision-making in subsurface evaluation. The 

cited example from Gulf of Mexico illustrates how 

uncertainty in the delineation and mapping of pay sands 

can be quantitatively estimated by deriving the most 

probable litho-facies and probability of pay sands from 

deterministic inversion results. Further, an analysis of 

geostatistical inversion results from Bongkot field, Gulf 

of Thailand established the improvement in pay 

uncertainty and pay prediction accuracy compared to 

traditional prognosis tools, which could be 
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quantitatively assessed. Finally, the reservoir sand 

thickness estimated from 81 equiprobable realizations 

from geostatistical inversion at 9 blind well locations 

from the Growler field, Cooper-Eromanga Basin showed 

that the P50 value turns out to be close to the actual 

value encountered at the respective wells.  

Thus, advanced workflows for geostatistical inversion 

provides a robust tool for uncertainty quantification in 

seismic reservoir characterization capturing both the 

bias and variance components of uncertainty. Ranking 

of a large number of equiprobable realizations using a 

local criterion and analyzing P10-P50-P90 values 

together quantify the associated uncertainty in a clear 

way.   
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